公开数据集
数据结构 ? 33.7M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Kelwin Fernandes (kafc _at_ inesctec _dot_ pt) - INESC TEC & FEUP, Porto, Portugal.
Jaime S. Cardoso - INESC TEC & FEUP, Porto, Portugal.
Jessica Fernandes - Universidad Central de Venezuela, Caracas, Venezuela.
Data Set Information:
* The dataset was acquired and annotated by professional physicians at 'Hospital Universitario de Caracas'.
* The subjective judgments (target variables) were originally done in an ordinal manner (poor, fair, good, excellent) and was discretized in two classes (bad, good).
* Images were randomly sampled from the original colposcopic sequences (videos).
* The original images and the manual segmentations are included in the 'images' directory.
* The dataset has three modalities (i.e. Hinselmann, Green, Schiller).
* The target variables are expert::X (X in 0,...,5) and consensus.
Attribute Information:
Three modalities: hinselmann, green, schiller.
Number of Attributes: 69 (62 predictive attributes, 7 target variables)
cervix_area: image area with cervix.
os_area: image area with external os.
walls_area: image area with vaginal walls.
speculum_area: image area with the speculum.
artifacts_area: image area with artifacts.
cervix_artifacts_area: cervix area with the artifacts.
os_artifacts_area: external os area with the artifacts.
walls_artifacts_area: vaginal walls with the artifacts.
speculum_artifacts_area: speculum area with the artifacts.
cervix_specularities_area: cervix area with the specular reflections.
os_specularities_area: external os area with the specular reflections.
walls_specularities_area: vaginal walls area with the specular reflections.
speculum_specularities_area: speculum area with the specular reflections.
specularities_area: total area with specular reflections.
area_h_max_diff: maximum area differences between the four cervix quadrants.
rgb_cervix_r_mean: average color information in the cervix (R channel).
rgb_cervix_r_std: stddev color information in the cervix (R channel).
rgb_cervix_r_mean_minus_std: (avg - stddev) color information in the cervix (R channel).
rgb_cervix_r_mean_plus_std: (avg + stddev) information in the cervix (R channel).
rgb_cervix_g_mean: average color information in the cervix (G channel).
rgb_cervix_g_std: stddev color information in the cervix (G channel).
rgb_cervix_g_mean_minus_std: (avg - stddev) color information in the cervix (G channel).
rgb_cervix_g_mean_plus_std: (avg + stddev) color information in the cervix (G channel).
rgb_cervix_b_mean: average color information in the cervix (B channel).
rgb_cervix_b_std: stddev color information in the cervix (B channel).
rgb_cervix_b_mean_minus_std: (avg - stddev) color information in the cervix (B channel).
rgb_cervix_b_mean_plus_std: (avg + stddev) color information in the cervix (B channel).
rgb_total_r_mean: average color information in the image (B channel).
rgb_total_r_std: stddev color information in the image (R channel).
rgb_total_r_mean_minus_std: (avg - stddev) color information in the image (R channel).
rgb_total_r_mean_plus_std: (avg + stddev) color information in the image (R channel).
rgb_total_g_mean: average color information in the image (G channel).
rgb_total_g_std: stddev color information in the image (G channel).
rgb_total_g_mean_minus_std: (avg - stddev) color information in the image (G channel).
rgb_total_g_mean_plus_std: (avg + stddev) color information in the image (G channel).
rgb_total_b_mean: average color information in the image (B channel).
rgb_total_b_std: stddev color information in the image (B channel).
rgb_total_b_mean_minus_std: (avg - stddev) color information in the image (B channel).
rgb_total_b_mean_plus_std: (avg + stddev) color information in the image (B channel).
hsv_cervix_h_mean: average color information in the cervix (H channel).
hsv_cervix_h_std: stddev color information in the cervix (H channel).
hsv_cervix_s_mean: average color information in the cervix (S channel).
hsv_cervix_s_std: stddev color information in the cervix (S channel).
hsv_cervix_v_mean: average color information in the cervix (V channel).
hsv_cervix_v_std: stddev color information in the cervix (V channel).
hsv_total_h_mean: average color information in the image (H channel).
hsv_total_h_std: stddev color information in the image (H channel).
hsv_total_s_mean: average color information in the image (S channel).
hsv_total_s_std: stddev color information in the image (S channel).
hsv_total_v_mean: average color information in the image (V channel).
hsv_total_v_std: stddev color information in the image (V channel).
fit_cervix_hull_rate: Coverage of the cervix convex hull by the cervix.
fit_cervix_hull_total: Image coverage of the cervix convex hull.
fit_cervix_bbox_rate: Coverage of the cervix bounding box by the cervix.
fit_cervix_bbox_total: Image coverage of the cervix bounding box.
fit_circle_rate: Coverage of the cervix circle by the cervix.
fit_circle_total: Image coverage of the cervix circle.
fit_ellipse_rate: Coverage of the cervix ellipse by the cervix.
fit_ellipse_total: Image coverage of the cervix ellipse.
fit_ellipse_goodness: Goodness of the ellipse fitting.
dist_to_center_cervix: Distance between the cervix center and the image center.
dist_to_center_os: Distance between the cervical os center and the image center.
experts::0: subjective assessment of the Expert 0 (target variable).
experts::1: subjective assessment of the Expert 1 (target variable).
experts::2: subjective assessment of the Expert 2 (target variable).
experts::3: subjective assessment of the Expert 3 (target variable).
experts::4: subjective assessment of the Expert 4 (target variable).
experts::5: subjective assessment of the Expert 5 (target variable).
consensus: subjective assessment of the consensus (target variable).
Relevant Papers:
Fernandes, Kelwin, Jaime S. Cardoso, and Jessica Fernandes. 'Transfer Learning with Partial Observability Applied to Cervical Cancer Screening.' Iberian Conference on Pattern Recognition and Image Analysis. Springer International Publishing, 2017.
Citation Request:
Fernandes, Kelwin, Jaime S. Cardoso, and Jessica Fernandes. 'Transfer Learning with Partial Observability Applied to Cervical Cancer Screening.' Iberian Conference on Pattern Recognition and Image Analysis. Springer International Publishing, 2017.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。