公开数据集
数据结构 ? 170K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Francesca Grisoni (francesca.grisoni '@' unimib.it), Davide Ballabio (davide.ballabio '@' unimib.it), Viviana Consonni, Milano Chemometrics and QSAR Research Group (http://www.michem.unimib.it/), Universit?? degli Studi Milano - Bicocca, Milano (Italy)
Data Set Information:
This dataset was used to develop classification QSAR models for the discrimination of binder/positive (199) and non-binder/negative (1488) molecules by means of different machine learning methods. Details can be found in the quoted reference: F. Grisoni, V. Consonni, D. Ballabio, (2019) Machine Learning Consensus to Predict the Binding to the Androgen Receptor within the CoMPARA project, Journal of chemical information and modeling, 59, 1839-1848; doi: 10.1021/acs.jcim.8b00794.
Attributes (molecular fingerprints) were calculated at the Milano Chemometrics and QSAR Research Group (Universit?? degli Studi Milano - Bicocca, Milano, Italy) on a set of chemicals provided by the National Center of Computational Toxicology, at the U.S. Environmental Protection Agency in the framework of the CoMPARA collaborative modelling project, which targeted the development of QSAR models to identify binders to the Androgen Receptor.
Attribute Information:
1024 binary molecular fingerprints and 1 experimental class:
1-1024) binary molecular fingerprint
1025) experimental class: positive (binder) and negative (non-binder)
Relevant Papers:
F. Grisoni, V. Consonni, D. Ballabio, (2019) Machine Learning Consensus to Predict the Binding to the Androgen Receptor within the CoMPARA project, Journal of chemical information and modeling, 59, 1839-1848; doi: 10.1021/acs.jcim.8b00794
Citation Request:
Please, cite the following paper if you publish results based on the QSAR androgen receptor dataset: F. Grisoni, V. Consonni, D. Ballabio, (2019) Machine Learning Consensus to Predict the Binding to the Androgen Receptor within the CoMPARA project, Journal of chemical information and modeling, 59, 1839-1848; doi: 10.1021/acs.jcim.8b00794
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。