公开数据集
数据结构 ? 41K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
托儿所数据库源于最初开发用于对托儿所应用程序进行排序的分层决策模型。20世纪80年代,斯洛文尼亚卢布尔雅那的这些学校入学人数过多,被拒绝的申请常常需要客观的解释。最终决定取决于三个子问题:父母和儿童托儿所的职业、家庭结构和财务状况以及家庭的社会和健康状况。该模型是在决策DEX专家系统外壳中开发的(M.Bohanec,V.Rajkovic:决策专家系统,Sistemica 1(1),第145-157页,1990年)。
The hierarchical model ranks nursery-school applications according to the following concept structure:
NURSERY evaluation of applications for nursery schools
. EMPLOY Employment of parents and child's nursery
. . parents Parents' occupation
. . has_nurs Child's nursery
. STRUCT_FINAN Family structure and financial standings
. . STRUCTURE Family structure
. . . form Form of the family
. . . children Number of children
. . housing Housing conditions
. . finance Financial standing of the family
. SOC_HEALTH Social and health picture of the family
. . social Social conditions
. . health Health conditions
Input attributes are printed in lowercase. Besides the target concept (NURSERY) the model includes four intermediate concepts: EMPLOY, STRUCT_FINAN, STRUCTURE, SOC_HEALTH. Every concept is in the original model related to its lower level descendants by a set of examples (for these examples sets see [Web link]).
The Nursery Database contains examples with the structural information removed, i.e., directly relates NURSERY to the eight input attributes: parents, has_nurs, form, children, housing, finance, social, health.
Because of known underlying concept structure, this database may be particularly useful for testing constructive induction and structure discovery methods.
Attribute Information:
parents: usual, pretentious, great_pret
has_nurs: proper, less_proper, improper, critical, very_crit
form: complete, completed, incomplete, foster
children: 1, 2, 3, more
housing: convenient, less_conv, critical
finance: convenient, inconv
social: non-prob, slightly_prob, problematic
health: recommended, priority, not_recom
Relevant Papers:
M. Olave, V. Rajkovic, M. Bohanec: An application for admission in public school systems. In (I. Th. M. Snellen and W. B. H. J. van de Donk and J.-P. Baquiast, editors) Expert Systems in Public Administration, pages 145-160. Elsevier Science Publishers (North Holland), 1989.
[Web link]
B. Zupan, M. Bohanec, I. Bratko, J. Demsar: Machine learning by function decomposition. ICML-97, Nashville, TN. 1997
[Web link]
Creator:
Vladislav Rajkovic et al. (13 experts)
Donors:
Marko Bohanec (marko.bohanec '@' ijs.si)
Blaz Zupan (blaz.zupan '@' ijs.si)
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。