公开数据集
数据结构 ? 425.95M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
AIMS AND PURPOSES
This corpus is intended to do cleaning (or binarization) and enhancement of noisy grayscale printed text images using supervised learning methods. To this end, noisy images and their corresponding cleaned or binarized ground truth are provided. Double resolution ground truth images are also provided in order to test superresolution methods.
CORPUS DIRECTORIES STRUCTURE
SimulatedNoisyOffice folder has been prepared for training, validation and test of supervised methods. RealNoisyOffice folder is provided for subjective evaluation.
.
|-- RealNoisyOffice
| |-- real_noisy_images_grayscale
| `-- real_noisy_images_grayscale_doubleresolution
`-- SimulatedNoisyOffice
|-- clean_images_binaryscale
|-- clean_images_grayscale
|-- clean_images_grayscale_doubleresolution
`-- simulated_noisy_images_grayscale
RealNoisyOffice
- real_noisy_images_grayscale: 72 grayscale images of scanned 'noisy' images.
- real_noisy_images_grayscale_doubleresolution: idem, double resolution.
SimulatedNoisyOffice
- simulated_noisy_images_grayscale: 72 grayscale images of scanned 'simulated noisy' images for training, validation and test.
- clean_images_grayscale_doubleresolution: Grayscale ground truth of the images with double resolution.
- clean_images_grayscale: Grayscale ground truth of the images with smoothing on the borders (normal resolution).
- clean_images_binary: Binary ground truth of the images (normal resolution).
DEscriptION
Every file is a printed text image following the pattern FontABC_NoiseD_EE.png:
A) Size of the font: footnote size (f), normal size (n) o large size (L).
B) Font type: typewriter (t), sans serif (s) or roman (r).
C) Yes/no emphasized font (e/m).
D) Type of noise: folded sheets (Noise f), wrinkled sheets (Noise w), coffee stains (Noise c), and footprints (Noise p).
E) Data set partition: training (TR), validation (VA), test (TE), real (RE).
For each type of font, one type of Noise: 17 files * 4 types of noise = 72 images.
OTHER INFORMATION
200 ppi => normal resolution
400 ppi => double resolution
Attribute Information:
The format of each file is the following: Grayscale PNG files ([Web link]). The ground truth is also provided as grayscale PNG files, and for the binary version the values are saturated to 0 and 255.
Relevant Papers:
J.?L.?Adelantado-Torres,?J.?Pastor-Pellicer,?and?M.?J.?Castro-Bleda.?Una?aplicación?móvil?para?la?captura?y
mejora?de?imágenes?de?textos,?in:?V?Jornadas?TIMM?(Tratamiento?de?la?Información?Multilingüe?y
Multimodal),?Red?temática?TIMM?(Tratamiento?de?Información?Multilingüe?y?Multimodal),?Sevilla,?2014.?
M.?J.?Castro-Bleda,?S.?Espa?a-Boquera?and?F.?Zamora-Martinez.?Encyclopedia?of?Artificial?Intelligence,
chapter?Behaviour-based?Clustering?of?Neural?Networks,?pages?144-151,?Information?Science?Reference,
2009.?
F.?Zamora-Martinez,?S.?Espa?a-Boquera?and?M.?J.?Castro-Bleda.?Behaviour-based?Clustering?of?Neural
Networks?applied?to?document?Enhancement,?in:?Computational?and?Ambient?Intelligence,?pages?144-151,
Springer,?2007.
Citation Request:
Please refer to the Machine Learning Repository's citation policy [Web link].
For the database:
F. Zamora-Martinez, S. Espa?a-Boquera and M. J. Castro-Bleda, Behaviour-based Clustering of Neural Networks applied to document Enhancement, in: Computational and Ambient Intelligence, pages 144-151, Springer, 2007.
M.J. Castro-Bleda (1), S. Espa?a-Boquera (1), J. Pastor-Pellicer (1), F. Zamora-Martinez (2)
mcastro '@' dsic.upv.es, sespana '@' dsic.upv.es, jpastor '@' dsic.upv.es, francisco.zamora '@' uch.ceu.es
(1) Departamento de Sistemas Informáticos? y Computación, Universitat Politècnica? de València, Valencia, Spain
(2)
Departamento de Ciencias Físicas, Matemáticas y de la Computación,
Universidad CEU Cardenal Herrera, Alfara del Patriarca, València, Spain
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。