Select Language

AI社区

公开数据集

办公室噪声语料数据集

办公室噪声语料数据集

425.95M
634 浏览
0 喜欢
15 次下载
0 条讨论
Computer Classification

Data Set Information:AIMS AND PURPOSESThis corpus is intended to do cleaning (or binarization) and enhancement of noisy......

数据结构 ? 425.95M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Data Set Information:

    AIMS AND PURPOSES

    This corpus is intended to do cleaning (or binarization) and enhancement of noisy grayscale printed text images using supervised learning methods. To this end, noisy images and their corresponding cleaned or binarized ground truth are provided. Double resolution ground truth images are also provided in order to test superresolution methods.

    CORPUS DIRECTORIES STRUCTURE

    SimulatedNoisyOffice folder has been prepared for training, validation and test of supervised methods. RealNoisyOffice folder is provided for subjective evaluation.

    .
    |-- RealNoisyOffice
    |   |-- real_noisy_images_grayscale
    |   `-- real_noisy_images_grayscale_doubleresolution
    `-- SimulatedNoisyOffice
       |-- clean_images_binaryscale
       |-- clean_images_grayscale
       |-- clean_images_grayscale_doubleresolution
       `-- simulated_noisy_images_grayscale

    RealNoisyOffice
    - real_noisy_images_grayscale: 72 grayscale images of scanned 'noisy' images.
    - real_noisy_images_grayscale_doubleresolution: idem, double resolution.

    SimulatedNoisyOffice
    - simulated_noisy_images_grayscale: 72 grayscale images of scanned 'simulated noisy' images for training, validation and test.
    - clean_images_grayscale_doubleresolution: Grayscale ground truth of the images with double resolution.
    - clean_images_grayscale: Grayscale ground truth of the images with smoothing on the borders (normal resolution).
    - clean_images_binary: Binary ground truth of the images (normal resolution).

    DEscriptION

    Every file is a printed text image following the pattern FontABC_NoiseD_EE.png:

    A) Size of the font: footnote size (f), normal size (n) o large size (L).

    B) Font type: typewriter (t), sans serif (s) or roman (r).

    C) Yes/no emphasized font (e/m).

    D) Type of noise: folded sheets (Noise f), wrinkled sheets (Noise w), coffee stains (Noise c), and footprints (Noise p).

    E) Data set partition: training (TR), validation (VA), test (TE), real (RE).

    For each type of font, one type of Noise: 17 files * 4 types of noise = 72 images.

    OTHER INFORMATION

    200 ppi => normal resolution
    400 ppi => double resolution


    Attribute Information:

    The format of each file is the following: Grayscale PNG files ([Web link]). The ground truth is also provided as grayscale PNG files, and for the binary version the values are saturated to 0 and 255.


    Relevant Papers:

    J.?L.?Adelantado-Torres,?J.?Pastor-Pellicer,?and?M.?J.?Castro-Bleda.?Una?aplicación?móvil?para?la?captura?y
    mejora?de?imágenes?de?textos,?in:?V?Jornadas?TIMM?(Tratamiento?de?la?Información?Multilingüe?y
    Multimodal),?Red?temática?TIMM?(Tratamiento?de?Información?Multilingüe?y?Multimodal),?Sevilla,?2014.?
    M.?J.?Castro-Bleda,?S.?Espa?a-Boquera?and?F.?Zamora-Martinez.?Encyclopedia?of?Artificial?Intelligence,
    chapter?Behaviour-based?Clustering?of?Neural?Networks,?pages?144-151,?Information?Science?Reference,
    2009.?
    F.?Zamora-Martinez,?S.?Espa?a-Boquera?and?M.?J.?Castro-Bleda.?Behaviour-based?Clustering?of?Neural
    Networks?applied?to?document?Enhancement,?in:?Computational?and?Ambient?Intelligence,?pages?144-151,
    Springer,?2007.


    Citation Request:

    Please refer to the Machine Learning Repository's citation policy [Web link].

    For the database:

    F. Zamora-Martinez, S. Espa?a-Boquera and M. J. Castro-Bleda, Behaviour-based Clustering of Neural Networks applied to document Enhancement, in: Computational and Ambient Intelligence, pages 144-151, Springer, 2007.


    M.J. Castro-Bleda (1), S. Espa?a-Boquera (1), J. Pastor-Pellicer (1), F. Zamora-Martinez (2)
    mcastro '@' dsic.upv.es, sespana '@' dsic.upv.es, jpastor '@' dsic.upv.es, francisco.zamora '@' uch.ceu.es

    (1) Departamento de Sistemas Informáticos? y Computación, Universitat Politècnica? de València, Valencia, Spain
    (2) Departamento de Ciencias Físicas, Matemáticas y de la Computación, Universidad CEU Cardenal Herrera, Alfara del Patriarca, València, Spain

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:12 去赚积分?
    • 634浏览
    • 15下载
    • 0点赞
    • 收藏
    • 分享