公开数据集
数据结构 ? 27.9M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
News are grouped into clusters that represent pages discussing the same news story.
The dataset includes also references to web pages that, at the access time, pointed (has a link to) one of the news page in the collection.
422937 news pages and divided up into:
152746 news of business category
108465 news of science and technology category
115920 news of business category
45615 news of health category
2076 clusters of similar news for entertainment category
1789 clusters of similar news for science and technology category
2019 clusters of similar news for business category
1347 clusters of similar news for health category
References to web pages containing a link to one news included in the collection are also included. They are represented as pairs of urls corresponding to 2-page browsing sessions. The collection includes 15516 2-page browsing sessions covering 946 distinct clusters divided up into:
6091 2-page sessions for business category
9425 2-page sessions for entertainment category
Attribute Information:
FILENAME #1: newsCorpora.csv (102.297.000 bytes)
DEscriptION: News pages
FORMAT: ID TITLE URL PUBLISHER CATEGORY STORY HOSTNAME TIMESTAMP
where:
ID Numeric ID
TITLE News title
URL Url
PUBLISHER Publisher name
CATEGORY News category (b = business, t = science and technology, e = entertainment, m = health)
STORY Alphanumeric ID of the cluster that includes news about the same story
HOSTNAME Url hostname
TIMESTAMP Approximate time the news was published, as the number of milliseconds since the epoch 00:00:00 GMT, January 1, 1970
FILENAME #2: 2pageSessions.csv (3.049.986 bytes)
DEscriptION: 2-page sessions
FORMAT: STORY HOSTNAME CATEGORY URL
where:
STORY Alphanumeric ID of the cluster that includes news about the same story
HOSTNAME Url hostname
CATEGORY News category (b = business, t = science and technology, e = entertainment, m = health)
URL Two space-delimited urls representing a browsing session
Relevant Papers:
Fabio Gasparetti. 2017. Modeling user interests from web browsing activities. Data Min. Knowl. Discov. 31, 2 (March 2017), 502-547. DOI: [Web link]
Citation Request:
Please refer to the Machine Learning Repository's citation policy
Provided by Artificial Intelligence Lab @ Faculty of Engineering, Roma Tre University - Italy
Contact: Fabio Gasparetti, Faculty of Engineering, Roma Tre University - Italy (gaspare '@' dia.uniroma3.it)
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。