公开数据集
数据结构 ? 593K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
The dataset was created by Athanasios Tsanas (tsanasthanasis '@' gmail.com) of the University of Oxford.
Data Set Information:
The original paper demonstrated that it is possible to correctly replicate the experts' binary assessment with approximately 90% accuracy using both 10-fold cross-validation and leave-one-subject-out validation. We experimented with both random forests and support vector machines, using standard approaches for optimizing the SVM's hyperparameters. It will be interesting if researchers can improve on this finding using advanced machine learning tools.
Details for the dataset can be found on the following paper.
A. Tsanas, M.A. Little, C. Fox, L.O. Ramig: a€?Objective automatic assessment of rehabilitative speech treatment in Parkinsona€?s diseasea€?, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 22, pp. 181-190, January 2014
A freely available preprint is availabe from the first author's website.
Attribute Information:
Each attribute (feature) corresponds to the application of a speech signal processing algorithm which aims to characterise objectively the signal. These algorithms include standard perturbation analysis methods, wavelet-based features, fundamental frequency-based features, and tools used to mine nonlinear time-series. Because of the extensive number of attributes we refer the interested readers to the relevant papers for further details.
Relevant Papers:
The dataset was introduced in:
A. Tsanas, M.A. Little, C. Fox, L.O. Ramig: a€?Objective automatic assessment of rehabilitative speech treatment in Parkinsona€?s diseasea€?, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 22, pp. 181-190, January 2014
Further details about the speech signal processing algorithms can be found in:
A. Tsanas, Accurate telemonitoring of Parkinsona€?s disease symptom severity using nonlinear speech signal processing and statistical machine learning, D.Phil. (Ph.D.) thesis, University of Oxford, UK, 2012
A. Tsanas, M.A. Little, P.E. McSharry, L.O. Ramig: a€?Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinsona€?s disease symptom severitya€?, Journal of the Royal Society Interface, Vol. 8, pp. 842-855, 2011
A. Tsanas, M.A. Little, P.E. McSharry, L.O. Ramig: a€?New nonlinear markers and insights into speech signal degradation for effective tracking of Parkinsona€?s disease symptom severitya€?, International Symposium on Nonlinear Theory and its Applications (NOLTA), pp. 457-460, Krakow, Poland, 5-8 September 2010
Preprints are available on the first author's website.
Citation Request:
If you use this dataset, please cite the following paper:
A. Tsanas, M.A. Little, C. Fox, L.O. Ramig: a€?Objective automatic assessment of rehabilitative speech treatment in Parkinsona€?s diseasea€?, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 22, pp. 181-190, January 2014
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。