公开数据集
数据结构 ? 5K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Original Source:
Breiman,L., Friedman,J.H., Olshen,R.A., & Stone,C.J. (1984).
Classification and Regression Trees. Wadsworth International Group: Belmont, California. (see pages 43-49).
Donor:
David Aha
Data Set Information:
This simple domain contains 7 Boolean attributes and 10 concepts, the set of decimal digits. Recall that LED displays contain 7 light-emitting diodes -- hence the reason for 7 attributes. The problem would be easy if not for the introduction of noise. In this case, each attribute value has the 10% probability of having its value inverted.
It's valuable to know the optimal Bayes rate for these databases. In this case, the misclassification rate is 26% (74% classification accuracy).
Attribute Information:
-- All attribute values are either 0 or 1, according to whether the corresponding light is on or not for the decimal digit.
-- Each attribute (excluding the class attribute, which is an integer ranging between 0 and 9 inclusive) has a 10% percent chance of being inverted.
Relevant Papers:
Breiman,L., Friedman,J.H., Olshen,R.A., & Stone,C.J. Classification and Regression Trees. Wadsworth International Group: Belmont, California. 1984. (see pages 43-49).
[Web link]
Quinlan,J.R. (1987). Simplifying Decision Trees. In International Journal of Man-Machine Studies.
[Web link]
Tan,M. & Eshelman,L. (1988). Using Weighted Networks to Represent Classification Knowledge in Noisy Domains. In Proceedings of the 5th International Conference on Machine Learning, 121-134, Ann Arbor, Michigan: Morgan Kaufmann.
[Web link]
Papers That Cite This Data Set1:
Joao Gama and Ricardo Rocha and Pedro Medas. Accurate decision trees for mining high-speed data streams. KDD. 2003. [View Context].
Tim Leunig and D. Stott Parker. Empirical comparisons of various voting methods in bagging. KDD. 2003. [View Context].
Xavier Llor and David E. Goldberg and Ivan Traus and Ester Bernad i Mansilla. Accuracy, Parsimony, and Generality in Evolutionary Learning Systems via Multiobjective Selection. IWLCS. 2002. [View Context].
Xavier Llor and David E. Goldberg. Minimal Achievable Error in the LED. Illinois Genetic Algorithms Laboratory University of Illinois at Urbana-Champaign. 2002. [View Context].
Huan Liu and Rudy Setiono. Incremental Feature Selection. Appl. Intell, 9. 1998. [View Context].
Kamal Ali and Michael J. Pazzani. Error Reduction through Learning Multiple Descriptions. Machine Learning, 24. 1996. [View Context].
Ramon Sangesa and Ulises Cortes. Possibilistic Conditional Dependency, Similarity and Information Measures: an application to causal network recovery. Departament de Llenguatges i Sistemes Informtics Departament de Llenguatges i Sistemes Informtics Technical University of Catalonia Technical University of Catalonia. [View Context].
Vikas Sindhwani and P. Bhattacharya and Subrata Rakshit. Information Theoretic Feature Crediting in Multiclass Support Vector Machines. [View Context].
Maria Salamo and Elisabet
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。