公开数据集
数据结构 ? 9K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
Data was used to test 2 tier approach with learning from positive and negative examples
Attribute Information:
1. dur: duration of agreement
[1..7]
2 wage1.wage : wage increase in first year of contract
[2.0 .. 7.0]
3 wage2.wage : wage increase in second year of contract
[2.0 .. 7.0]
4 wage3.wage : wage increase in third year of contract
[2.0 .. 7.0]
5 cola : cost of living allowance
[none, tcf, tc]
6 hours.hrs : number of working hours during week
[35 .. 40]
7 pension : employer contributions to pension plan
[none, ret_allw, empl_contr]
8 stby_pay : standby pay
[2 .. 25]
9 shift_diff : shift differencial : supplement for work on II and III shift
[1 .. 25]
10 educ_allw.boolean : education allowance
[true false]
11 holidays : number of statutory holidays
[9 .. 15]
12 vacation : number of paid vacation days
[ba, avg, gnr]
13 lngtrm_disabil.boolean : employer's help during employee longterm disability
[true , false]
14 dntl_ins : employers contribution towards the dental plan
[none, half, full]
15 bereavement.boolean : employer's financial contribution towards the covering the costs of bereavement
[true , false]
16 empl_hplan : employer's contribution towards the health plan
[none, half, full]
Relevant Papers:
Bergadano, F., Matwin, S., Michalski, R., Zhang, J., Measuring Quality of Concept Descriptions, Procs. of the 3rd European Working Sessions on Learning, Glasgow, October 1988.
[Web link]
Bergadano, F., Matwin, S., Michalski, R., Zhang, J.,Representing and Acquiring Imprecise and Context-dependent Concepts in Knowledge-based Systems, Procs. of ISMIS'88, North Holland, 1988.
[Web link]
Papers That Cite This Data Set1:
Rudy Setiono. Feedforward Neural Network Construction Using Cross Validation. Neural Computation, 13. 2001. [View Context].
Endre Boros and Peter Hammer and Toshihide Ibaraki and Alexander Kogan and Eddy Mayoraz and Ilya B. Muchnik. An Implementation of Logical Analysis of Data. IEEE Trans. Knowl. Data Eng, 12. 2000. [View Context].
Gary M. Weiss and Haym Hirsh. A Quantitative Study of Small Disjuncts: Experiments and Results. Department of Computer Science Rutgers University. 2000. [View Context].
Lorne Mason and Jonathan Baxter and Peter L. Bartlett and Marcus Frean. Boosting Algorithms as Gradient Descent. NIPS. 1999. [View Context].
Richard Maclin. Boosting Classifiers Regionally. AAAI/IAAI. 1998. [View Context].
Huan Liu and Rudy Setiono. A Probabilistic Approach to Feature Selection - A Filter Solution. ICML. 1996. [View Context].
Oya Ekin and Peter L. Hammer and Alexander Kogan and Pawel Winter. Distance-based Classification Methods. e p o r t RUTCOR ffl Rutgers Center for Operations Research ffl Rutgers University. 1996. [View Context].
George H. John and Ron Kohavi and Karl Pfleger. Irrelevant Features and the Subset Selection Problem. ICML. 1994. [View Context].
Ron Kohavi and George H. John. Automatic Parameter Selection by Minimizing Estimated Error. Computer Science Dept. Stanford University. [View Context].
Alexander K. Seewald. Dissertation Towards Understanding Stacking Studies of a General Ensemble Learning Scheme ausgefuhrt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Naturwissenschaften. [View Context].
YongSeog Kim and W. Nick Street and Filippo Menczer. Optimal Ensemble Construction via meta-Evolutionary Ensembles. Business Information Systems, Utah State University. [View Context].
Ida G. Sprinkhuizen-Kuyper and Elena Smirnova and I. Nalbantis. Reliability yields Information Gain. IKAT, Universiteit Maastricht. [View Context].
Chris Drummond and Robert C. Holte. C4.5, Class Imbalance, and Cost Sensitivity: Why Under-Sampling beats Over-Sampling. Institute for Information Technology, National Research Council Canada. [View Context].
Huan Liu and Rudy Setiono. To appear in Proceedings of IEA-AIE96 FEATURE SELECTION AND CLASSIFICATION -- A PROBABILISTIC WRAPPER APPROACH. Department of Information Systems and Computer Science National University of Singapore. [View Context].
John G. Cleary and Leonard E. Trigg. Experiences with OB1, An Optimal Bayes Decision Tree Learner. Department of Computer Science University of Waikato. [View Context].
Alexander K. Seewald. Met
Creators:
Collective Barganing Review, montly publication,
Labour Canada, Industrial Relations Information Service,
Ottawa, Ontario, K1A 0J2, Canada, (819) 997-3117
The
data includes all collective agreements reached in the business and
personal services sector for locals with at least 500 members (teachers,
nurses, university staff, police, etc) in Canada in 87 and first
quarter of 88.
Donor:
Stan Matwin, Computer Science Dept
University of Ottawa,
34 Somerset East, K1N 9B4, (stan '@' uotcsi2.bitnet)
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。