公开数据集
数据结构 ? 900M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
We created this data by sampling and processing the www.kelkoo.com logs. The data records offers which were clicked (or shown) to the users of the www.kelkoo.com (and partners) in Germany as well as meta-information of these users and offers and the objective is to predict if a given user will click on a given offer.
Attribute Information:
userid offerid countrycode category merchant utcdate implicit-feedback
1. train_de.csv (3,14 GB)
Instances: 15,844,718
Attributes: 2,299,713
userid: Categorical, 291,485
offerid: Categorical, 2,158,859
countrycode: Categorical, 1 (de - Germany)
category: Integer, 271
merchant: Integer, 703
utcdate: Timestamp, 2016-06-01 02:00:17.0 to 2016-06-14 23:52:51.0
implicit feedback (click): Binary, 0 or 1
2. test_de.csv (381,3 MB)
Instances: 1,919,562
Attributes: 2,299,713
userid: Categorical, 278,293
offerid: Categorical, 380,803
countrycode: Categorical, 1
category: Integer, 267
merchant: Integer, 738
utcdate: Timestamp, 2016-06-14 23:52:51.0 to 2016-07-01 01:59:36.0
implicit feedback (click): Binary, 0 or 1
Relevant Papers:
Sumit Sidana, Charlotte Laclau, Massih-Reza Amini, Gilles Vandelle, and Andre Bois-Crettez. 'KASANDR: A Large-Scale Dataset with Implicit Feedback for Recommendation', SIGIR 2017.
Citation Request:
If you publish results based on this data set, please acknowledge its use, by referring to:
Sumit Sidana, Charlotte Laclau, Massih-Reza Amini, Gilles Vandelle, and Andre Bois-Crettez. 'KASANDR: A Large-Scale Dataset with Implicit Feedback for Recommendation', SIGIR 2017.
Massih-Reza Amini
Univ. Grenoble Alpes, CNRS/LIG
massih-reza.amini '@' univ-grenoble-alpes.fr
Charlotte Laclau
Univ. Grenoble Alpes, CNRS/LIG
charlotte.laclau '@' univ-grenoble-alpes.fr
Sumit Sidana
Univ. Grenoble Alpes, CNRS/LIG
sumit.sidana '@' imag.fr
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。