Select Language

AI社区

公开数据集

Internet广告数据集,预测图像是否为广告或非广告

Internet广告数据集,预测图像是否为广告或非广告

264K
511 浏览
0 喜欢
3 次下载
0 条讨论
Computer Classification

Data Set Information:This dataset represents a set of possible advertisements on Internet pages. The features encode the......

数据结构 ? 264K

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Data Set Information:

    This dataset represents a set of possible advertisements on Internet pages.  The features encode the geometry of the image (if available) as well as phrases occuring in the URL, the image's URL and alt text, the anchor text, and words occuring near the anchor text. The task is to predict whether an image is an advertisement ("ad") or not ("nonad").


    Attribute Information:

    (3 continous; others binary; this is the "STANDARD encoding" mentioned in the [Kushmerick, 99].)

    One or more of the three continous features are missing in 28% of the instances; missing values should be interpreted as "unknown".


    Relevant Papers:

    N. Kushmerick (1999). "Learning to remove Internet advertisements", 3rd Int Conf Autonomous Agents.  Available at www.cs.ucd.ie/staff/nick/research/[Web link].
    [Web link]


    Papers That Cite This Data Set1:


    Dmitriy Fradkin and David Madigan. Experiments with random projections for machine learning. KDD. 2003.  [View Context].

    Sergio A. Alvarez and Takeshi Kawato and Carolina Ruiz. Mining over loosely coupled data sources using neural experts. Computer Science Dept. Boston College.  [View Context].

    Shay Cohen and Eytan Ruppin and Gideon Dror. Feature Selection based on the Shapley Value. School of Computer Sciences Tel-Aviv University.  [View Context].


    Citation Request:

    Please refer to the Machine Learning Repository's citation policy


    Creator & donor:

    Nicholas Kushmerick <nick '@' ucd.ie>

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:10 去赚积分?
    • 511浏览
    • 3下载
    • 0点赞
    • 收藏
    • 分享