公开数据集
数据结构 ? 128K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
Each patient could be in two possible categories CAD or Normal. A patient is categorized as CAD, if his/her diameter narrowing is greater than or equal to 50%, and otherwise as Normal .
Note 1: In this extension LAD, LCX, and RCA features have been added. CAD (Last column in dataset) happens when at least one of these three arteries is stenotic. To use this dataset only one of the LAD, LCX, RCA or Cath (Result of angiography) must be in dataset and the other ones must be eliminated for classification.
Note 2: This dataset not only can be used for CAD detection, but also for stenosis diagnosis of each LAD, LCX and RCA arteries.
Attribute Information:
The extension of Z-Alizadeh Sani dataset contains the records of 303 patients, each of which have 59 features.The features are arranged in four groups: demographic, symptom and examination, ECG, and laboratory and echo features.
Note 1: In this extension LAD, LCX, and RCA features have been added. CAD (Last column in dataset) happens when at least one of these three arteries is stenotic. To use this dataset only one of the LAD, LCX, RCA or Cath (Result of angiography) must be in dataset and the other ones must be eliminated for classification.
Note 2: This dataset not only can be used for CAD detection, but also for stenosis diagnosis of each LAD, LCX and RCA arteries.
Relevant Papers:
R. Alizadehsani, J. Habibi, M. J. Hosseini, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., 'A data mining approach for diagnosis of coronary artery disease,' Computer Methods and Programs in Biomedicine, vol. 111, pp. 52-61, 2013/07/01/ 2013.
R. Alizadehsani, J. Habibi, B. Bahadorian, H. Mashayekhi, A. Ghandeharioun, R. Boghrati, et al., 'Diagnosis of Coronary Arteries Stenosis Using Data Mining,' Journal of Medical Signals and Sensors, vol. 2, pp. 153-159, Jul-Sep
R. Alizadehsani, M. J. Hosseini, Z. A. Sani, A. Ghandeharioun, and R. Boghrati, 'Diagnosis of Coronary Artery Disease Using Cost-Sensitive Algorithms,' in 2012 IEEE 12th International Conference on Data Mining Workshops, 2012, pp. 9-16.
Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei, and A. A. Yarifard, 'Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm,' Computer Methods and Programs in Biomedicine, vol. 141, pp. 19-26, 2017/04/01/ 2017.
R. Alizadehsani, J. Habibi, Z. Alizadeh Sani, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., 'Diagnosing Coronary Artery Disease via Data Mining Algorithms by Considering Laboratory and Echocardiography Features,' Research in Cardiovascular Medicine, vol. 2, pp. 133-139, 07/31
R. Alizadehsani, J. Habibi, M. J. Hosseini, R. Boghrati, A. Ghandeharioun, B. Bahadorian, et al., 'Diagnosis of coronary artery disease using data mining techniques based on symptoms and ecg features,' European Journal of Scientific Research, vol. 82, pp. 542-553, 2012.
R. Alizadehsani, M. H. Zangooei, M. J. Hosseini, J. Habibi, A. Khosravi, M. Roshanzamir, et al., 'Coronary artery disease detection using computational intelligence methods,' Knowledge-based Systems, vol. 109, pp. 187-197, 2016/10/01/ 2016.
R. Alizadehsani, J. Habibi, Z. A. Sani, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., 'Diagnosis of Coronary Artery Disease Using Data mining based on Lab Data and Echo Features,' Journal of Medical and Bioengineering, vol. 1, 2012.
A. Roohallah, H. Mohammad Javad, B. Reihane, G. Asma, K. Fahime, and S. Zahra Alizadeh, 'Exerting Cost-Sensitive and Feature Creation Algorithms for Coronary Artery Disease Diagnosis,' International Journal of Knowledge Discovery in Bioinformatics (IJKDB), vol. 3, pp. 59-79, 2012.
R. Alizadehsani, M. J. Hosseini, Z. Alizadehsani, M. H. Mohammadi, O. Barati, and F. Khozeimeh, 'System for determining the need for Angiography in patients with symptoms of Coronary Artery disease,' ed: Google Patents, 2014.
F. Babi??, J. Olej??r, Z. Vantov??, and J. Parali??, 'Predictive and Descriptive Analysis for Heart Disease Diagnosis,' presented at the Federated Conference on Computer Science and Information Systems, 2017.
LOHITA, Kodali et al. Performance Analysis of Various Data Mining Techniques in the Prediction of Heart Disease. Indian Journal of Science and Technology, [S.l.], dec. 2015. ISSN 0974 -5645. Available at: <[Web link]>. Date accessed: 17 Nov. 2017. [Web link].
J. Bekta??, T. Ibrik?§i, and I. ?–zcan, 'Classification of Real Imbalanced Cardiovascular Data Using Feature Selection and Sampling Methods: A Case Study with Neural Networks and Logistic Regression,' International Journal on Artificial Intelligence Tools, 2017.
C. Yadav, S. Lade, and M. K. Suman, 'Predictive Analysis for the Diagnosis of Coronary Artery Disease using Association Rule Mining,' International Journal of Computer Applications, vol. 87, 2014.
Citation Request:
Extension of Z-Alizadeh Sani Dataset User Agreement
I agree with following items.
a€¢ To cite Z-Alizadeh Sani Dataset in any paper of mine or my collaborators that makes any use of the database. The reference is:
1. R. Alizadehsani et al., a€?A data mining approach for diagnosis of coronary artery disease,a€? Computer Methods and Programs in Biomedicine, vol.111, no.1, pp.52-61, Jul. 2013.
2. R. Alizadehsani, M.H. Zangooei, M.J. Hosseini, J. Habibi, A. Khosravi, M. Roshanzamir, F. Khozeimeh, N. Sarrafzadegan, S. Nahavandi, Coronary artery disease detection using computational intelligence methods, Knowledge-based Systems, 109 (2016) 187-197
a€¢ To use the dataset for research purposes only.
Provide the names, email addresses, institutions, and other contact information of the donors and creators of the data set.
Name:Dr Zahra Alizadeh Sani,Associate Professor of cardiology,
email:Drzas '@' rhc.ac.ir,
institution:
Cardiovascular Imaging Department, Rajaei Cardiovascular, Medical &
Research Center, Iran University , Tehran, Iran.
Post code:1996911151
website: http://dralizadehsani.rhc.ac.ir/Files/Forms/2016-11-13_01.46.29_dr.alizadeh.CV.pdf
Name:Roohallah Alizadehsani, PhD student
email: alizadeh_roohallah '@' yahoo.com
institution: Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria 3217, Australia.
website: http://ce.sharif.ir/~ralizadeh/
Name: Mohamad Roshanzamir, PhD candidate
email: mohamad.roshanzamir '@' ec.iut.ac.ir
institution: Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。