公开数据集
数据结构 ? 1.1M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
The dataset provides patient reviews on specific drugs along with related conditions. Furthermore, reviews are grouped into reports on the three aspects benefits, side effects and overall comment. Additionally, ratings are available concerning overall satisfaction as well as a 5 step side effect rating and a 5 step effectiveness rating. The data was obtained by crawling online pharmaceutical review sites. The intention was to study
(1) sentiment analysis of drug experience over multiple facets, i.e. sentiments learned on specific aspects such as effectiveness and side effects,
(2) the transferability of models among domains, i.e. conditions, and
(3) the transferability of models among different data sources (see 'Drug Review Dataset (Drugs.com)').
The data is split into a train (75%) a test (25%) partition (see publication) and stored in two .tsv (tab-separated-values) files, respectively.
important notes:
When using this dataset, you agree that you
1) only use the data for research purposes
2) don't use the data for any commerical purposes
3) don't distribute the data to anyone else
4) cite us
Attribute Information:
1. urlDrugName (categorical): name of drug
2. condition (categorical): name of condition
3. benefitsReview (text): patient on benefits
4. sideEffectsReview (text): patient on side effects
5. commentsReview (text): overall patient comment
6. rating (numerical): 10 star patient rating
7. sideEffects (categorical): 5 step side effect rating
8. effectiveness (categorical): 5 step effectiveness rating
Relevant Papers:
Felix Gr??er, Surya Kallumadi, Hagen Malberg, and Sebastian Zaunseder. 2018. Aspect-based Sentiment Analysis of Drug Reviews Applying Cross-Domain and Cross-Data Learning. In Proceedings of the 2018 International Conference on Digital Health (DH '18). ACM, New York, NY, USA, 121-125. DOI: [Web link]
Citation Request:
Felix Gr??er, Surya Kallumadi, Hagen Malberg, and Sebastian Zaunseder. 2018. Aspect-based Sentiment Analysis of Drug Reviews Applying Cross-Domain and Cross-Data Learning. In Proceedings of the 2018 International Conference on Digital Health (DH '18). ACM, New York, NY, USA, 121-125. DOI: [Web link]
Surya Kallumadi
Kansas State University
Manhattan, Kansas, USA
surya '@' ksu.edu
Felix Gr??er
Institut für Biomedizinische Technik
Technische Universit?t Dresden
Dresden, Germany
felix.graesser '@' tu-dresden.de
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。