公开数据集
数据结构 ? 3.72M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
药物通常是小的有机分子,通过与受体上的靶点结合而达到预期的活性。发现新药的第一步通常是识别和分离与其结合的受体,然后测试许多小分子与靶点结合的能力。这使得研究人员的任务是确定活性(结合)化合物和非活性(非结合)化合物的区别。这样的测定可用于设计新的化合物,这些化合物不仅结合,而且还具有药物所需的所有其他性质(溶解度、口服吸收、无副作用、适当的作用时间、毒性等)。
为了进行特征选择挑战,修改了原始数据。特别是,我们增加了一些分心功能,称为“探针”,没有预测能力。特征和模式的顺序是随机的。
DOROTHEA -- Positive ex. -- Negative ex. -- Total
Training set -- 78 -- 722 -- 800
Validation set -- 34 -- 316 -- 350
Test set -- 78 -- 722 -- 800
All -- 190 -- 1760 -- 1950
We mapped Active compounds to the target value +1 (positive examples) and Inactive compounds to the target value –1 (negative examples).
Number of variables/features/attributes:
Real: 50000
Probes: 50000
Total: 100000
This dataset is one of five datasets used in the NIPS 2003 feature selection challenge. Our website [Web link] is still open for post-challenge submissions. Information about other related challenges are found at: [Web link]. The CLOP package includes sample code to process these data: [Web link].
All details about the preparation of the data are found in our technical report: Design of experiments for the NIPS 2003 variable selection benchmark, Isabelle Guyon, July 2003, [Web link] (also included in the dataset archive). Such information was made available only after the end of the challenge.
The data are split into training, validation, and test set. Target values are provided only for the 2 first sets. Test set performance results are obtained by submitting prediction results to: [Web link].
The data are in the following format:
dataname.param: Parameters and statistics about the data
dataname.feat: Identities of the features (withheld, to avoid biasing feature selection).
dataname_train.data: Training set (a sparse binary matrix, patterns in lines, features in columns: the number of the non-zero features are provided).
dataname_valid.data: Validation set.
dataname_test.data: Test set.
dataname_train.labels: Labels (truth values of the classes) for training examples.
dataname_valid.labels: Validation set labels (withheld during the benchmark, but provided now).
dataname_test.labels: Test set labels (withheld, so the data can still be use as a benchmark).
Attribute Information:
We do not provide attribute information to avoid biasing feature selection.
Relevant Papers:
The best challenge entrants wrote papers collected in the book:
Isabelle Guyon, Steve Gunn, Masoud Nikravesh, Lofti Zadeh (Eds.), Feature Extraction, Foundations and Applications. Studies in Fuzziness and Soft Computing. Physica-Verlag, Springer. [Web link]
See also:
Isabelle Guyon, et al, 2007. Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark. Pattern Recognition Letters 28 (2007) 1438–1444.
and the associated technical report:
Isabelle Guyon, et al. 2006. Feature selection with the CLOP package. Technical Report. [Web link].
Citation Request:
Isabelle Guyon, Steve R. Gunn, Asa Ben-Hur, Gideon Dror, 2004. Result analysis of the NIPS 2003 feature selection challenge. In: NIPS. [Web link].
a. Original owners
The dataset with which DOROTHEA was created is one
of the KDD (Knowledge Discovery in Data Mining) Cup 2001. The original
dataset and papers of the winners of the competition are available at: http://www.cs.wisc.edu/~dpage/kddcup2001/.
DuPont Pharmaceuticals graciously provided this data set for the KDD
Cup 2001 competition. All publications referring to analysis of this
data set should acknowledge DuPont Pharmaceuticals Research Laboratories
and KDD Cup 2001.
b. Donor of database
This version of the
database was prepared for the NIPS 2003 variable and feature selection
benchmark by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA (isabelle '@' clopinet.com).
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。