Select Language

AI社区

公开数据集

不诚实互联网用户数据集

不诚实互联网用户数据集

10K
583 浏览
0 喜欢
2 次下载
0 条讨论
Person Classification

Data Set Information:在普适计算中,交互用户无法获得关于彼此可信度的信息。因此,不公平的用户可以恶意地对待他人。所提出的......

数据结构 ? 10K

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md


    Data Set Information:

    在普适计算中,交互用户无法获得关于彼此可信度的信息。因此,不公平的用户可以恶意地对待他人。所提出的解决方案能够通过监控每个用户在网络上交互期间的行为来评估每个用户的可信度。这些行为由包含重要参数的元组表示。基于这些元组,该体系结构结合了一些基于人工智能的技术来实现一个决策系统。

    The tuples are as follows:
    eij =


    Attribute Information:

    1) CT {CT_range_1, CT_range_2, CT_range_3, CT_range_4}
    2) CU {CU_range_1, CU_range_2, CU_range_3, CU_range_4}
    3) LT {LT_range_1, LT_range_2, LT_range_3, LT_range_4}
    4) TC {sport, game, ECommerce, holiday}
    5) TS {trustworthy, untrustworthy}

    The numerical attributes (CT, CU, LT) was discretized.
    Several of the papers listed below contain detailed descriptions of how these attributes were discretized.


    Relevant Papers:

    G. Da€?Angelo, S. Rampone, F. Palmieri, a€?Developing a Trust Model for Pervasive Computing based on Apriori Association Rules Learning and Bayesian Classificationa€?, SOCO a€“ Soft Computing Journal, Vol.21, n.21, pp. 6297-6315, 2017.  DOI: 10.1007/s00500-016-2183-1


    Citation Request:

    If you intend to use this dataset on your research, please cite the following works:
    1. G. Da€?Angelo, S. Rampone, F. Palmieri, a€?Developing a Trust Model for Pervasive Computing based on Apriori Association Rules Learning and Bayesian Classificationa€?, SOCO a€“ Soft Computing Journal, Vol.21, n.21, pp. 6297-6315, 2017.  DOI: 10.1007/s00500-016-2183-1
    2. G. D'Angelo, S. Rampone and F. Palmieri, 'An Artificial Intelligence-based Trust Model for Pervasive Computing,' 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, 2015, pp. 701-706. DOI: 10.1109/3PGCIC.2015.94

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:15 去赚积分?
    • 583浏览
    • 2下载
    • 0点赞
    • 收藏
    • 分享