Select Language

AI社区

公开数据集

2014-2015年的陆地卫星时间序列卫星图像数据集

2014-2015年的陆地卫星时间序列卫星图像数据集

1M
757 浏览
0 喜欢
3 次下载
0 条讨论
Physical Classification

Data Set Information:This dataset was derived from geospatial data from two sources: 1) Landsat time-series satellite im......

数据结构 ? 1M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Data Set Information:

    This dataset was derived from geospatial data from two sources: 1) Landsat time-series satellite imagery from the years 2014-2015, and 2) crowdsourced georeferenced polygons with land cover labels obtained from OpenStreetMap. The crowdsourced polygons cover only a small part of the image area, and are used used to extract training data from the image for classifying the rest of the image. The main challenge with the dataset is that both the imagery and the crowdsourced data contain noise (due to cloud cover in the images and innaccurate labeling/digitizing of polygons).

    Files in zip folder
    -The 'training.csv' file contains the training data for classification. Do not use this file to evaluate classification accuracy because it contains noise (many class labeling errors).
    -The 'testing.csv' file contains testing data to evaluate the classification accuracy. This file does not contain any class labeling errors.


    Attribute Information:

    class: The land cover class (impervious, farm, forest, grass, orchard, water) [note: this is the target variable to classify].
    max_ndvi: the maximum NDVI (normalized difference vegetation index) value derived from the time-series of satellite images.
    20150720_N - 20140101_N : NDVI values extracted from satellite images acquired between January 2014 and July 2015, in reverse chronological order (dates given in the format yyyymmdd).


    Relevant Papers:

    Johnson, B. A., & Iizuka, K. (2016). Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping: Case study of the Laguna de Bay area of the Philippines. Applied Geography, 67, 140-149.



    Citation Request:

    Please cite: Johnson, B. A., & Iizuka, K. (2016). Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping: Case study of the Laguna de Bay area of the Philippines. Applied Geography, 67, 140-149.


    Brian Johnson
    johnson '@' iges.or.jp
    Institute for Global Environmental Strategies, Japan

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:15 去赚积分?
    • 757浏览
    • 3下载
    • 0点赞
    • 收藏
    • 分享