公开数据集
数据结构 ? 4K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
The estimated relative performance values were estimated by the authors using a linear regression method. See their article (pp 308-313) for more details on how the relative performance values were set.
Attribute Information:
1. vendor name: 30
(adviser, amdahl,apollo, basf, bti, burroughs, c.r.d, cambex, cdc, dec,
dg, formation, four-phase, gould, honeywell, hp, ibm, ipl, magnuson,
microdata, nas, ncr, nixdorf, perkin-elmer, prime, siemens, sperry,
sratus, wang)
2. Model Name: many unique symbols
3. MYCT: machine cycle time in nanoseconds (integer)
4. MMIN: minimum main memory in kilobytes (integer)
5. MMAX: maximum main memory in kilobytes (integer)
6. CACH: cache memory in kilobytes (integer)
7. CHMIN: minimum channels in units (integer)
8. CHMAX: maximum channels in units (integer)
9. PRP: published relative performance (integer)
10. ERP: estimated relative performance from the original article (integer)
Relevant Papers:
Ein-Dor and Feldmesser (CACM 4/87, pp 308-317)
Kibler,D. & Aha,D. (1988). Instance-based Prediction of Real-Valued Attributes. In Proceedings of the CSCSI (Canadian AI) Conference.
[Web link]
Papers That Cite This Data Set1:
Dan Pelleg. Scalable and Practical Probability Density Estimators for Scientific Anomaly Detection. School of Computer Science Carnegie Mellon University. 2004. [View Context].
Yongge Wang. A New Approach to Fitting Linear Models in High Dimensional Spaces. Alastair Scott (Department of Statistics, University of Auckland). [View Context].
Citation Request:
Please refer to the Machine Learning Repository's citation policy
Creator:
Phillip Ein-Dor and Jacob Feldmesser
Ein-Dor: Faculty of Management
Tel Aviv University; Ramat-Aviv;
Tel Aviv, 69978; Israel
Donor:
David W. Aha (aha '@' ics.uci.edu) (714) 856-8779
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。