公开数据集
数据结构 ? 0M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Ben H Williams
School of Informatics,
University of Edinburgh,
ben.williams '@' ed.ac.uk
Data Set Information:
The characters here were used for a PhD study on primitive extraction using HMM based models. The data consists of 2858 character samples, contained in the cell array 'mixout'. The struct variable 'consts' contains a field consts.charlabels which provides ennummerated labels for the characters. consts.key provides the key for each label. The data was captured using a WACOM tablet. 3 Dimensions were kept - x, y, and pen tip force. The data has been numerically differentiated and Gaussian smoothed, with a sigma value of 2. Data was captured at 200Hz. The data was normalised with consts.datanorm. Only characters with a single 'PEN-DOWN' segment were considered. Character segmentation was performed using a pen tip force cut-off point. The characters have also been shifted so that their velocity profiles best match the mean of the set.
Attribute Information:
Each character sample is a 3-dimensional pen tip velocity trajectory. This is contained in matrix format, with 3 rows and T columns where T is the length of the character sample.
Relevant Papers:
B.H. Williams, M.Toussaint, and A.J. Storkey. Extracting motion primitives from natural handwriting data. In ICANN, volume 2, pages 634–643, 2006.
B.H. Williams, M.Toussaint, and A.J. Storkey. A primitive based generative model to infer timing information in unpartitioned handwriting data. In IJCAI, pages 1119–1124, 2007.
B.H. Williams, M. Toussaint, and A.J. Storkey. Modelling motion primitives and their timing in biologically executed movements. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1609–1616. MIT Press, Cambridge, MA, 2008.
Citation Request:
Please refer to the Machine Learning Repository's citation policy
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。