公开数据集
数据结构 ? 164K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
Observations come from 2 data streams (people flow in and out of the building), over 15 weeks, 48 time slices per day (half hour count aggregates).
The purpose is to predict the presence of an event such as a conference in the building that is reflected by unusually high people counts for that day/time period.
Attribute Information:
1. Flow ID: 7 is out flow, 9 is in flow
2. Date: MM/DD/YY
3. Time: HH:MM:SS
4. Count: Number of counts reported for the previous half hour
Rows: Each half hour time slice is represented by 2 rows: one row for the out flow during that time period (ID=7) and one row for the in flow during that time period (ID=9)
Attributes in .events file ("ground truth")
1. Date: MM/DD/YY
2. Begin event time: HH:MM:SS (military)
3. End event time: HH:MM:SS (military)
4. Event name (anonymized)
Relevant Papers:
"Adaptive event detection with time-varying Poisson processes"
A. Ihler, J. Hutchins, and P. Smyth
Proceedings of the 12th ACM SIGKDD Conference (KDD-06), August 2006.
Citation Request:
Please refer to the Machine Learning Repository's citation policy
Creator and Maintainer:
Jon Hutchins
UCI
johutchi '@' uci.edu
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。