公开数据集
数据结构 ? 0M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Creators:
1. Dr. William H. Wolberg, General Surgery Dept.
University of Wisconsin, Clinical Sciences Center
Madison, WI 53792
wolberg '@' eagle.surgery.wisc.edu
2. W. Nick Street, Computer Sciences Dept.
University of Wisconsin
1210 West Dayton St., Madison, WI 53706
street '@' cs.wisc.edu 608-262-6619
3. Olvi L. Mangasarian, Computer Sciences Dept.,
University of Wisconsin
1210 West Dayton St., Madison, WI 53706
olvi '@' cs.wisc.edu
Donor:
Nick Street
Data Set Information:
Each record represents follow-up data for one breast cancer case. These are consecutive patients seen by Dr. Wolberg since 1984, and include only those cases exhibiting invasive breast cancer and no evidence of distant metastases at the time of diagnosis.
The first 30 features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. A few of the images can be found at [Web Link]
The separation described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.
The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].
The Recurrence Surface Approximation (RSA) method is a linear programming model which predicts Time To Recur using both recurrent and nonrecurrent cases. See references (i) and (ii) above for details of the RSA method.
This database is also available through the UW CS ftp server:
ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WPBC/
Attribute Information:
1) ID number
2) Outcome (R = recur, N = nonrecur)
3) Time (recurrence time if field 2 = R, disease-free time if field 2 = N)
4-33) Ten real-valued features are computed for each cell nucleus:
a) radius (mean of distances from center to points on the perimeter)
b) texture (standard deviation of gray-scale values)
c) perimeter
d) area
e) smoothness (local variation in radius lengths)
f) compactness (perimeter^2 / area - 1.0)
g) concavity (severity of concave portions of the contour)
h) concave points (number of concave portions of the contour)
i) symmetry
j) fractal dimension ("coastline approximation" - 1)
Relevant Papers:
W. N. Street, O. L. Mangasarian, and W.H. Wolberg. An inductive learning approach to prognostic prediction. In A. Prieditis and S. Russell, editors, Proceedings of the Twelfth International Conference on Machine Learning, pages 522--530, San Francisco, 1995. Morgan Kaufmann.
[Web Link]
O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995.
[Web Link]
W.H. Wolberg, W.N. Street, D.M. Heisey, and O.L. Mangasarian. Computerized breast cancer diagnosis and prognosis from fine needle aspirates. Archives of Surgery 1995;130:511-516.
[Web Link]
W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Image analysis and machine learning applied to breast cancer diagnosis and prognosis. Analytical and Quantitative Cytology and Histology, Vol. 17 No. 2, pages 77-87, April 1995.
W.H. Wolberg, W.N. Street, D.M. Heisey, and O.L. Mangasarian. Computer-derived nuclear ``grade'' and breast cancer prognosis. Analytical and Quantitative Cytology and Histology, Vol. 17, pages 257-264, 1995.
[Web Link]
See also:
[Web Link]
[Web Link]
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。