Select Language

AI社区

公开数据集

AutoUniv数据集,用于分类任务的高级数据生成器

AutoUniv数据集,用于分类任务的高级数据生成器

7.72M
670 浏览
0 喜欢
2 次下载
0 条讨论
N/A Classification

Data Set Information:The user first creates a classification model and then generates classified examples from it.To cre......

数据结构 ? 7.72M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md


    Data Set Information:

    The user first creates a classification model and then generates classified examples from it.
    To create a model, the following are specified: the number of attributes (up to 1000) and their type (discrete or continuous), the number of classes (up to 10), the complexity of the underlying rules and the noise level. AutoUniv then produces a model through a process of constrained randomised search to satisfy the user's requirements. A model can have up to 3000 rules. Rare class models can be designed. A sequence of models can be designed to reflect concept and/or population drift.

    AutoUniv creates three text files for a model: a Prolog specification of the model used to generate examples (.aupl);  a user-friendly statement of the classification rules in an 'if ... then' format (.aurules);  a statistical summary of the main properties of the model, including its Bayes rate (.auprops).


    Attribute Information:

    Attributes may be discrete with up to 10 values or continuous. A discrete attribute can be nominal with values v1, v2, v3 ... or integer with values 0, 1, 2 , ... .


    Relevant Papers:

    Marrs, G, Hickey, RJ and Black, MM (2010) Modeling the example life-cycle in an online classification learner. In Proceedings of HaCDAIS 2010: International Workshop on Handling Concept Drift in Adaptive Information Systems.
    [Web link]#proc .

    Marrs, G, Hickey, RJ and Black, MM (2010) The Impact of Latency on online Classification Learning with Concept Drift. In Y. Bi and M.A. Williams (Eds.): KSEM 2010, LNAI 6291, Springer-Verlag, Berlin, pp. 459a€“469.  

    Hickey, RJ (2007) Structure and Majority Classes in Decision Tree Learning. Journal of Machine Learning Research, 8, pp. 1747-1768.


    Citation Request:

    Please refer to the Machine Learning Repository's citation policy


    AutoUniv was developed by Ray. J. Hickey. Email: ray.j.hickey '@' gmail.com
    AutoUniv web-site: http://sites.google.com/site/autouniv/.


    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:10 去赚积分?
    • 670浏览
    • 2下载
    • 0点赞
    • 收藏
    • 分享