公开数据集
数据结构 ? 7.72M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
The user first creates a classification model and then generates classified examples from it.
To create a model, the following are specified: the number of attributes (up to 1000) and their type (discrete or continuous), the number of classes (up to 10), the complexity of the underlying rules and the noise level. AutoUniv then produces a model through a process of constrained randomised search to satisfy the user's requirements. A model can have up to 3000 rules. Rare class models can be designed. A sequence of models can be designed to reflect concept and/or population drift.
AutoUniv creates three text files for a model: a Prolog specification of the model used to generate examples (.aupl); a user-friendly statement of the classification rules in an 'if ... then' format (.aurules); a statistical summary of the main properties of the model, including its Bayes rate (.auprops).
Attribute Information:
Attributes may be discrete with up to 10 values or continuous. A discrete attribute can be nominal with values v1, v2, v3 ... or integer with values 0, 1, 2 , ... .
Relevant Papers:
Marrs, G, Hickey, RJ and Black, MM (2010) Modeling the example life-cycle in an online classification learner. In Proceedings of HaCDAIS 2010: International Workshop on Handling Concept Drift in Adaptive Information Systems.
[Web link]#proc .
Marrs, G, Hickey, RJ and Black, MM (2010) The Impact of Latency on online Classification Learning with Concept Drift. In Y. Bi and M.A. Williams (Eds.): KSEM 2010, LNAI 6291, Springer-Verlag, Berlin, pp. 459a€“469.
Hickey, RJ (2007) Structure and Majority Classes in Decision Tree Learning. Journal of Machine Learning Research, 8, pp. 1747-1768.
Citation Request:
Please refer to the Machine Learning Repository's citation policy
AutoUniv was developed by Ray. J. Hickey. Email: ray.j.hickey '@' gmail.com
AutoUniv web-site: http://sites.google.com/site/autouniv/.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。