公开数据集
数据结构 ? 64.6K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
根据研究目的,该数据集允许属性和属性排除的几种新组合,或修改属性类型(分类、整数或实数)。该数据集(工作缺勤-第一部分)曾在诺维德朱略大学信息学和知识管理研究生课程的学术研究中使用。
Attribute Information:
1. Individual identification (ID)
2. Reason for absence (ICD).
Absences attested by the International Code of Diseases (ICD) stratified into 21 categories (I to XXI) as follows:
I Certain infectious and parasitic diseases
II Neoplasms
III Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism
IV Endocrine, nutritional and metabolic diseases
V Mental and behavioural disorders
VI Diseases of the nervous system
VII Diseases of the eye and adnexa
VIII Diseases of the ear and mastoid process
IX Diseases of the circulatory system
X Diseases of the respiratory system
XI Diseases of the digestive system
XII Diseases of the skin and subcutaneous tissue
XIII Diseases of the musculoskeletal system and connective tissue
XIV Diseases of the genitourinary system
XV Pregnancy, childbirth and the puerperium
XVI Certain conditions originating in the perinatal period
XVII Congenital malformations, deformations and chromosomal abnormalities
XVIII Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified
XIX Injury, poisoning and certain other consequences of external causes
XX External causes of morbidity and mortality
XXI Factors influencing health status and contact with health services.
And 7 categories without (CID) patient follow-up (22), medical consultation (23), blood donation (24), laboratory examination (25), unjustified absence (26), physiotherapy (27), dental consultation (28).
3. Month of absence
4. Day of the week (Monday (2), Tuesday (3), Wednesday (4), Thursday (5), Friday (6))
5. Seasons (summer (1), autumn (2), winter (3), spring (4))
6. Transportation expense
7. Distance from Residence to Work (kilometers)
8. Service time
9. Age
10. Work load Average/day
11. Hit target
12. Disciplinary failure (yes=1; no=0)
13. Education (high school (1), graduate (2), postgraduate (3), master and doctor (4))
14. Son (number of children)
15. Social drinker (yes=1; no=0)
16. Social smoker (yes=1; no=0)
17. Pet (number of pet)
18. Weight
19. Height
20. Body mass index
21. Absenteeism time in hours (target).arff header for Weka:
@relation Absenteeism_at_work
@attribute ID {31.0, 27.0, 19.0, 30.0, 7.0, 20.0, 24.0, 32.0, 3.0, 33.0, 26.0, 29.0, 18.0, 25.0, 17.0, 14.0, 16.0, 23.0, 2.0, 21.0, 36.0, 15.0, 22.0, 5.0, 12.0, 9.0, 6.0, 34.0, 10.0, 28.0, 13.0, 11.0, 1.0, 4.0, 8.0, 35.0}
@attribute Reason_for_absence {17.0, 3.0, 15.0, 4.0, 21.0, 2.0, 9.0, 24.0, 18.0, 1.0, 12.0, 5.0, 16.0, 7.0, 27.0, 25.0, 8.0, 10.0, 26.0, 19.0, 28.0, 6.0, 23.0, 22.0, 13.0, 14.0, 11.0, 0.0}
@attribute Month_of_absence REAL
@attribute Day_of_the_week {5.0, 2.0, 3.0, 4.0, 6.0}
@attribute Seasons {4.0, 1.0, 2.0, 3.0}
@attribute Transportation_expense REAL
@attribute Distance_from_Residence_to_Work REAL
@attribute Service_time INTEGER
@attribute Age INTEGER
@attribute Work_load_Average/day_ REAL
@attribute Hit_target REAL
@attribute Disciplinary_failure {1.0, 0.0}
@attribute Education REAL
@attribute Son REAL
@attribute Social_drinker {1.0, 0.0}
@attribute Social_smoker {1.0, 0.0}
@attribute Pet REAL
@attribute Weight REAL
@attribute Height REAL
@attribute Body_mass_index REAL
@attribute Absenteeism_time_in_hours REAL
Relevant Papers:
Martiniano, A., Ferreira, R. P., Sassi, R. J., & Affonso, C. (2012). Application of a neuro fuzzy network in prediction of absenteeism at work. In Information Systems and Technologies (CISTI), 7th Iberian Conference on (pp. 1-4). IEEE.
Citation Request:
Martiniano, A., Ferreira, R. P., Sassi, R. J., & Affonso, C. (2012). Application of a neuro fuzzy network in prediction of absenteeism at work. In Information Systems and Technologies (CISTI), 7th Iberian Conference on (pp. 1-4). IEEE.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。