Select Language

AI社区

公开数据集

胸部x光面罩和标签

胸部x光面罩和标签

5161.58M
242 浏览
0 喜欢
0 次下载
0 条讨论
Health,Biology,Image Data,Health Conditions,Computer Vision,Healthcare Classification

数据结构 ? 5161.58M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    The dataset contains x-rays and corresponding masks. Some masks are missing so it is advised to cross-reference the images and masks. [Original Dataset before modification][1] The OP had the following request: It is requested that publications resulting from the use of this data attribute the source (National Library of Medicine, National Institutes of Health, Bethesda, MD, USA and Shenzhen No.3 People’s Hospital, Guangdong Medical College, Shenzhen, China) and cite the following publications: Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F, Xue Z, Palaniappan K, Singh RK, Antani S, Thoma G, Wang YX, Lu PX, McDonald CJ. Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging. 2014 Feb;33(2):233-45. doi: 10.1109/TMI.2013.2284099. PMID: 24108713 Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Xue Z, Karargyris A, Antani S, Thoma G, McDonald CJ. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging. 2014 Feb;33(2):577-90. doi: 10.1109/TMI.2013.2290491. PMID: 24239990 Montgomery County X-ray Set X-ray images in this data set have been acquired from the tuberculosis control program of the Department of Health and Human Services of Montgomery County, MD, USA. This set contains 138 posterior-anterior x-rays, of which 80 x-rays are normal and 58 x-rays are abnormal with manifestations of tuberculosis. All images are de-identified and available in DICOM format. The set covers a wide range of abnormalities, including effusions and miliary patterns. The data set includes radiology readings available as a text file. Ideas Experiment with lung segmentation Build disease classifiers for various conditions Test models on data across different manufacturers Build GANs that are able to make the datasets indistinguishable (Adversarial Discriminative Domain Adaptation: https://arxiv.org/abs/1702.05464) [1]: https://www.kaggle.com/kmader/pulmonary-chest-xray-abnormalities/home
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 242浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享