Select Language

AI社区

公开数据集

所有NeurIPS(NIPS)文件

所有NeurIPS(NIPS)文件

310.53M
202 浏览
0 喜欢
0 次下载
0 条讨论
Computer Science,Sports,NLP,Deep Learning,Artificial Intelligence,Neural Networks Classification

数据结构 ? 310.53M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context The Conference and Workshop on [Neural Information Processing Systems](https://nips.cc/) (abbreviated as **NeurIPS** and formerly **NIPS**) is a machine learning and computational neuroscience conference held every December. This dataset is inspired by dataset [NIPS Papers](https://www.kaggle.com/benhamner/nips-papers) of [Ben Hamner](https://www.kaggle.com/benhamner). While the original dataset by Ben Hamner represent the time period of 1987-2017 covering over **7241** papers, **2439** more papers has been published in the year of 2018-19. Hence, decided to get everything together for the Kaggle community. Content This dataset contains the **year of publication**, **title**, **author details**, **abstracts**, and **full text** of all NeurIPS papers from 1987 to 2019. Since, NeurIPS Conference and Workshop happen in the month of December each year, the dataset will be updated annually. Acknowledgements I scraped all the papers from [https://nips.cc ](https://nips.cc) using a beautiful library in Python called BeautifulSoup. You can find the code to scrap all the papers on my [GitHub Repo](https://github.com/rowhitswami/All-NeurIPS-Papers-Scraper). A huge thanks to **NeurIPS** for making the data public. Inspiration Feel free to torture the data and show your creativity in Kaggle Kernels. Some ideas included but not limited to: - Topic modelling. - Extract keywords. - Exploratory Data Analysis on all NeurIPS papers. - Create a semantic search engine to answer your query in Data Science, Machine Learning, Deep Learning and Reinforcement Learning.
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 202浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享