公开数据集
数据结构 ? 5.64M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
The label annotation mistakes by human annotators brings up two challenges to NER:
mistakes in the test set can interfere the evaluation results and even lead to an inaccurate assessment of model performance.
mistakes in the training set can hurt NER model training.
Addressing these two problems :
manually correcting the mistakes in the test set to form a cleaner benchmark.
develop framework CrossWeigh to handle the mistakes in the training set.
Content
CrossWeigh works with any NER algorithm that accepts weighted training instances. It is composed of two modules. 1) mistake estimation: where potential mistakes are identified in the training data through a cross-checking process and 2) mistake re-weighing: where weights of those mistakes are lowered during training the final NER model.
Acknowledgements
Named-Entity-Recognition-NER-Papers
Pengfei Liu, Jinlan Fu and other contributors.
Inspiration
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。