Select Language

AI社区

公开数据集

名称实体识别数据集

名称实体识别数据集

5.64M
236 浏览
0 喜欢
0 次下载
0 条讨论
NLP Classification

The label annotation mistakes by human annotators brings up two challenges to NER:mistakes in the test set can interfere......

数据结构 ? 5.64M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    The label annotation mistakes by human annotators brings up two challenges to NER:

    • mistakes in the test set can interfere the evaluation results and even lead to an inaccurate assessment of model performance.

    • mistakes in the training set can hurt NER model training.

      Addressing these two problems :

    • manually correcting the mistakes in the test set to form a cleaner benchmark.

    • develop framework CrossWeigh to handle the mistakes in the training set.

    CrossWeigh

    ner

    Content

    CrossWeigh works with any NER algorithm that accepts weighted training instances. It is composed of two modules. 1) mistake estimation: where potential mistakes are identified in the training data through a cross-checking process and 2) mistake re-weighing: where weights of those mistakes are lowered during training the final NER model.

    Acknowledgements

    Named-Entity-Recognition-NER-Papers
    Pengfei Liu, Jinlan Fu and other contributors.

    Inspiration

    Name Entity Recognition


    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:12 去赚积分?
    • 236浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享