Select Language

AI社区

公开数据集

旅行顾问酒店评论

旅行顾问酒店评论

14.27M
357 浏览
0 喜欢
0 次下载
0 条讨论
Arts and Entertainment,Travel,NLP,Ratings and Reviews,Hotels and Accommodations Classification

数据结构 ? 14.27M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    # Abstract > Explore Hotel aspects and Predict the rating of each review. # About this dataset > Hotels play a crucial role in traveling and with the increased access to information new pathways of selecting the best ones emerged. With this dataset, consisting of 20k reviews crawled from Tripadvisor, you can explore what makes a great hotel and maybe even use this model in your travels! # How to use > - Predict Review Rating - Topic Modeling on Reviews - Explore key aspects that make hotels good or bad # Acknowledgements > If you use this dataset in your research, please credit the authors. > Citation Alam, M. H., Ryu, W.-J., Lee, S., 2016. Joint multi-grain topic sentiment: modeling semantic aspects for online reviews. Information Sciences 339, 206–223. [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1219899.svg)](https://doi.org/10.5281/zenodo.1219899) > License CC BY NC 4.0 > Splash banner Photo by [Rhema Kallianpur](https://unsplash.com/@rhemakallianpur?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) on [Unsplash](https://unsplash.com/photos/uocSnWMhnAs). > Splash icon Logo by Tripadvisor. > [More Datasets](https://www.kaggle.com/andrewmvd/datasets)
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 357浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享