Select Language

AI社区

公开数据集

新闻点击诱饵数据集

新闻点击诱饵数据集

3.41M
359 浏览
0 喜欢
0 次下载
0 条讨论
Business,Online Communities,News,NLP,Classification,Deep Learning,Text Data Classification

数据结构 ? 3.41M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Online content publishers often use catchy headlines for their articles in order to attract users to their websites. These headlines, popularly known as clickbait, exploit a user’s curiosity gap and lure them to click on links that often disappoint them. Existing methods for automatically detecting clickbait rely on heavy feature engineering and domain knowledge. Dataset The train1.csv collected from Abhijnan Chakraborty, Bhargavi Paranjape, Sourya Kakarla, and Niloy Ganguly. "Stop Clickbait: Detecting and Preventing Click baits in Online News Media”. In Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), San Fransisco, US, August 2016. [GitHub](https://github.com/bhargaviparanjape/clickbait/tree/master/dataset) It has two columns first one contains headlines and the second one has numerical labels of clickbait in which 1 represents that it is clickbait and 0 represents that it is the non-clickbait headline. The dataset contains a total of 32000 rows of which 50% are clickbait and the other 50% are non-clickbait. The train2.csv collected from the [Clickbait news detection dataset](https://www.kaggle.com/c/clickbait-news-detection/data) from the Kaggle InClass Prediction Competition. The dataset contains the title and text of the news and label.
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 359浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享