Select Language

AI社区

公开数据集

用于Sarcasm检测的新闻标题数据集,用于讽刺和假新闻检测任务的高质量数据集

用于Sarcasm检测的新闻标题数据集,用于讽刺和假新闻检测任务的高质量数据集

11.13M
313 浏览
0 喜欢
1 次下载
0 条讨论
NLP,Deep Learning,Classification,Earth and Nature,Computer Science,Programming Classification

Past studies in Sarcasm Detection mostly make use of Twitter datasets collected using hashtag based supervision but such......

数据结构 ? 11.13M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Past studies in Sarcasm Detection mostly make use of Twitter datasets collected using hashtag based supervision but such datasets are noisy in terms of labels and language. Furthermore, many tweets are replies to other tweets and detecting sarcasm in these requires the availability of contextual tweets.

    To overcome the limitations related to noise in Twitter datasets, this News Headlines dataset for Sarcasm Detection is collected from two news website. TheOnion aims at producing sarcastic versions of current events and we collected all the headlines from News in Brief and News in Photos categories (which are sarcastic). We collect real (and non-sarcastic) news headlines from HuffPost.

    This new dataset has following advantages over the existing Twitter datasets:

    • Since news headlines are written by professionals in a formal manner, there are no spelling mistakes and informal usage. This reduces the sparsity and also increases the chance of finding pre-trained embeddings.

    • Furthermore, since the sole purpose of TheOnion is to publish sarcastic news, we get high-quality labels with much less noise as compared to Twitter datasets.

    • Unlike tweets which are replies to other tweets, the news headlines we obtained are self-contained. This would help us in teasing apart the real sarcastic elements.

    Content

    Each record consists of three attributes:

    • is_sarcastic: 1 if the record is sarcastic otherwise 0

    • headline: the headline of the news article

    • article_link: link to the original news article. Useful in collecting supplementary data

    General statistics of data, instructions on how to read the data in python, and basic exploratory analysis could be found at this GitHub repo. A hybrid NN architecture trained on this dataset can be found at this GitHub repo.

    Citation

    If you're using this dataset for your work, please cite the following articles:

    Citation in text format:

    1. Misra, Rishabh and Prahal Arora. "Sarcasm Detection using News Headlines Dataset." AI Open (2023).
    2. Misra, Rishabh and Jigyasa Grover. "Sculpting Data for ML: The first act of Machine Learning." ISBN 9798585463570 (2021).

    Citation in BibTex format:

    @article{misra2023Sarcasm,
      title = {Sarcasm Detection using News Headlines Dataset},
      journal = {AI Open},
      volume = {4},
      pages = {13-18},
      year = {2023},
      issn = {2666-6510},
      doi = {https://doi.org/10.1016/j.aiopen.2023.01.001},
      url = {https://www.sciencedirect.com/science/article/pii/S2666651023000013},
      author = {Rishabh Misra and Prahal Arora},
    }
    @book{misra2021sculpting,
      author = {Misra, Rishabh and Grover, Jigyasa},
      year = {2021},
      month = {01},
      pages = {},
      title = {Sculpting Data for ML: The first act of Machine Learning},
      isbn = {9798585463570}
    }

    Please link to rishabhmisra.github.io/publications as the source of this dataset. Thanks!

    Inspiration

    Can you identify sarcastic sentences? Can you distinguish between fake news and legitimate news?

    Reading the data

    Following code snippet could be used to read the data:

    import json
    
    def parse_data(file):
        for l in open(file,'r'):
            yield json.loads(l)
    
    data = list(parse_data('./Sarcasm_Headlines_Dataset.json'))


    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:16 去赚积分?
    • 313浏览
    • 1下载
    • 0点赞
    • 收藏
    • 分享