Select Language

AI社区

公开数据集

名人和名人及其财产

名人和名人及其财产

2.7M
246 浏览
0 喜欢
0 次下载
0 条讨论
Earth and Nature,Arts and Entertainment,News,NLP,Real Estate,Celebrities Classification

数据结构 ? 2.7M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context This dataset is based on the work presented in the following publication, please cite it if you use the data in an academic publication: Alnajjar, K., H?m?l?inen, M., Chen, H., & Toivonen, H. (2017). [Expanding and Weighting Stereotypical Properties of Human Characters for Linguistic Creativity](https://computationalcreativity.net/iccc2017/ICCC_17_accepted_submissions/ICCC-17_paper_29.pdf). In A. Goel, A. Jordanous, & A. Pease (Eds.), Proceedings of the 8th International Conference on Computational Creativity (ICCC'17) (pp. 25-32). Atlanta, GA: Georgia Institute of Technology . Content The file contains a list of famous characters (such as Abraham Lincoln) and human categories (such as Activist) and a set of adjectival properties that are typically used to describe them. The adjectival properties have a weight indicating how descriptive they are of a given famous character. The data can be browsed interactively on [https://khalidalnajjar.com/services/expanding-properties](https://khalidalnajjar.com/services/expanding-properties). Acknowledgements The data is a result of automatic expansion of the NOC list [1] data with Thesaurus Rex [2]. [1] Veale, T. (2016). Round Up The Usual Suspects: Knowledge-Based Metaphor Generation. In Proceedings of the Meta4NLP Workshop on Metaphor at NAACL-2016, the annual meeting of the North American Association for Computational Linguistics. San Diego, California. [2] Veale, T. and Hao, Y. (2008). Enriching WordNet with Folk Knowledge and Stereotypes. In Proceedings of GWC 2008, the 4th Global WordNet Conference. Szeged, Hungary.
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 246浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享