Select Language

AI社区

公开数据集

分析与各种产品相关的情感

分析与各种产品相关的情感

1M
210 浏览
0 喜欢
0 次下载
0 条讨论
Earth and Nature,NLP,Classification Classification

数据结构 ? 1M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    # PLEASE UPVOTE if you find it useful !!!! Analyzing sentiments related to various products such as Tablet, Mobile and various other gizmos can be fun and difficult especially when collected across various demographics around the world. In this dataset develop a machine learning model to accurately classify various products into 4 different classes of sentiments based on the raw text review provided by the user. Analyzing these sentiments will not only help serve the customers better but can also reveal lolot of customer traits present/hidden in the reviews. The sentiment analysis requires a lot to be taken into account mainly due to the preprocessing involved to represent raw text and make them machine-understandable. Usually, we stem and lemmatize the raw information and then represent it using TF-IDF, Word Embeddings, etc. However, provided the state-of-the-art NLP models such as Transformer based BERT models one can skip the manual feature engineering like TF-IDF and Count Vectorizers.
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 210浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享