Select Language

AI社区

公开数据集

GitHub Bugs预测挑战(机器黑客)

GitHub Bugs预测挑战(机器黑客)

298.85M
260 浏览
0 喜欢
0 次下载
0 条讨论
Computer Science,Programming,NLP,Classification,Deep Learning,Multiclass Classification Classification

数据结构 ? 298.85M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Foreseeing bugs, features, and questions on GitHub can be fun, especially when one is provided with a colossal dataset containing the GitHub issues. In this hackathon, we are challenging the MachineHack community to come up with an algorithm that can predict the bugs, features, and questions based on GitHub titles and the text body. With text data, there can be a lot of challenges especially when the dataset is big. Analyzing such a dataset requires a lot to be taken into account mainly due to the preprocessing involved to represent raw text and make them machine-understandable. Usually, we stem and lemmatize the raw information and then represent it using TF-IDF, Word Embeddings, etc. However, provided the state-of-the-art NLP models such as Transformer based BERT models one can skip the manual feature engineering like TF-IDF and Count Vectorizers. In this short span of time, we would encourage you to leverage the ImageNet moment (Transfer Learning) in NLP using various pre-trained models. Hackathon Link- https://www.machinehack.com/hackathons/predict_github_issues_embold_sponsored_hackathon/overview
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 260浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享