Select Language

AI社区

公开数据集

多个社交媒体平台的新闻人气

多个社交媒体平台的新闻人气

27.62M
240 浏览
0 喜欢
0 次下载
0 条讨论
Earth and Nature,Online Communities,News,Social Networks,NLP,Exploratory Data Analysis Classification

数据结构 ? 27.62M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context Social Media has been taking up everything on the Internet. People getting the latest news, useful resources, life partner and what not. In a world where Social media plays a big role in giving news, we must also know that news which affects our sentiments are going to get spread like a wildfire. Based on the Headline and the title, and according to the date given and the Social media platforms, you have to predict how it has affected the human sentiment scores. You have to predict the column “SentimentTitle” and “SentimentHeadline”. Content This is a subset of the dataset of the same name available in the UCI Machine Learning Repository The collected data relates to a period of 8 months, between November 2015 and July 2016, accounting for about 100,000 news items on four different topics: economy, microsoft, obama and palestine. Dataset Information The attributes for each of the dataset are : - **IDLink (numeric):** Unique identifier of news items - **Title (string):** Title of the news item according to the official media sources - **Headline (string):** Headline of the news item according to the official media sources - **Source (string):** Original news outlet that published the news item - **Topic (string):** Query topic used to obtain the items in the official media sources - **Publish-Date (timestamp):** Date and time of the news items' publication - **Facebook (numeric):** Final value of the news items' popularity according to the social media source Facebook - **Google-Plus (numeric):** Final value of the news items' popularity according to the social media source Google+ - **LinkedIn (numeric):** Final value of the news items' popularity according to the social media source LinkedIn - **SentimentTitle:** Sentiment score of the title, Higher the score, better is the impact or +ve sentiment and vice-versa. _(Target Variable 1)_ - **SentimentHeadline:** Sentiment score of the text in the news items' headline. Higher the score, better is the impact or +ve sentiment. _(Target Variable 2)_
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 240浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享