Select Language

AI社区

公开数据集

无子词的快速文本嵌入

无子词的快速文本嵌入

6459.98M
213 浏览
0 喜欢
0 次下载
0 条讨论
Computer Science,Education,Software,NLP Classification

数据结构 ? 6459.98M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    # FastText https://fasttext.cc/docs/en/english-vectors.html 2 million word vectors trained on Common Crawl (600B tokens), 300-dimensional pretrained FastText English word vectors released by Facebook. FastText is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. This text contains two embedding files without sub-words that is: - wiki-news-300d-1M.vec.zip: 1 million word vectors trained on Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset (16B tokens). - crawl-300d-2M.vec.zip: 2 million word vectors trained on Common Crawl (600B tokens). Acknowledgements This embeddings were created with the paper: T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, A. Joulin. Advances in Pre-Training Distributed Word Representations @inproceedings{mikolov2018advances, title={Advances in Pre-Training Distributed Word Representations}, author={Mikolov, Tomas and Grave, Edouard and Bojanowski, Piotr and Puhrsch, Christian and Joulin, Armand}, booktitle={Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018)}, year={2018} } Thanks to [fastext team](https://fasttext.cc/docs/en/english-vectors.html)
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 213浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享