Select Language

AI社区

公开数据集

研究论文主题建模2.0

研究论文主题建模2.0

21.96M
202 浏览
0 喜欢
0 次下载
0 条讨论
Earth and Nature,Education,NLP,Astronomy,Research Classification

数据结构 ? 21.96M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    **Topic Modeling for Research Articles 2.0** Researchers have access to large online archives of scientific articles. As a consequence, finding relevant articles has become more and more difficult. Tagging or topic modelling provides a way to give clear token of identification to research articles which facilitates recommendation and search process. Earlier on the Independence Day we conducted a Hackathon to predict the topics for each article included in the test set. Continuing with the same problem, In this Live Hackathon we will take one more step ahead and predict the tags associated with the articles. Given the abstracts for a set of research articles, predict the tags for each article included in the test set. Note that a research article can possibly have multiple tags. The research article abstracts are sourced from the following 4 topics: 1. Computer Science 2. Mathematics 3. Physics 4. Statistics **Dataset Column description** ![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3486681%2F03486d5878c9443cce843065f8123113%2FCapture.PNG?generation=1602917005279232&alt=media) **Tags.csv** List of possible tags are as follows: [Tags, Analysis of PDEs, Applications, Artificial Intelligence, Astrophysics of Galaxies, Computation and Language, Computer Vision and Pattern Recognition, Cosmology and Nongalactic Astrophysics, Data Structures and Algorithms, Differential Geometry, Earth and Planetary Astrophysics, Fluid Dynamics,Information Theory, Instrumentation and Methods for Astrophysics, Machine Learning, Materials Science, Methodology, Number Theory, Optimization and Control, Representation Theory, Robotics, Social and Information Networks, Statistics Theory, Strongly Correlated Electrons, Superconductivity, Systems and Control]
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 202浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享