公开数据集
数据结构 ? 21.96M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
**Topic Modeling for Research Articles 2.0**
Researchers have access to large online archives of scientific articles. As a consequence, finding relevant articles has become more and more difficult. Tagging or topic modelling provides a way to give clear token of identification to research articles which facilitates recommendation and search process.
Earlier on the Independence Day we conducted a Hackathon to predict the topics for each article included in the test set. Continuing with the same problem, In this Live Hackathon we will take one more step ahead and predict the tags associated with the articles.
Given the abstracts for a set of research articles, predict the tags for each article included in the test set.
Note that a research article can possibly have multiple tags. The research article abstracts are sourced from the following 4 topics:
1. Computer Science
2. Mathematics
3. Physics
4. Statistics
**Dataset Column description**
![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3486681%2F03486d5878c9443cce843065f8123113%2FCapture.PNG?generation=1602917005279232&alt=media)
**Tags.csv**
List of possible tags are as follows:
[Tags, Analysis of PDEs, Applications, Artificial Intelligence, Astrophysics of Galaxies, Computation and Language, Computer Vision and Pattern Recognition, Cosmology and Nongalactic Astrophysics, Data Structures and Algorithms, Differential Geometry, Earth and Planetary Astrophysics, Fluid Dynamics,Information Theory, Instrumentation and Methods for Astrophysics, Machine Learning, Materials Science, Methodology, Number Theory, Optimization and Control, Representation Theory, Robotics, Social and Information Networks, Statistics Theory, Strongly Correlated Electrons, Superconductivity, Systems and Control]
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。