Select Language

AI社区

公开数据集

WBC Image Dataset 1

WBC Image Dataset 1

6.66M
537 浏览
0 喜欢
0 次下载
0 条讨论
Medical 2D Semantic Segmentation

This is two datasets of white blood cell (WBC) images used for “Fast and Robust Segmentationof White Blood Cell Images......

数据结构 ? 6.66M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    This is two datasets of white blood cell (WBC) images used for “Fast and Robust Segmentation of White Blood Cell Images by Self-supervised Learning”, which can be used to evaluate cell image segmentation methods.

    These two datasets are significantly different from each other in terms of the image color, cell shape, background, etc., which can better evaluate the robustness of WBC segmentation approach. The ground truth segmentation results are manually sketched by domain experts, where the nuclei, cytoplasms and background including red blood cells are marked in white, gray and black respectively. We also submitted the segmentation results by our approach, where the whole WBC region are marked in white and the others are marked in black.

    Dataset 1 was obtained from Jiangxi Tecom Science Corporation, China. It contains three hundred 120×120 images of WBCs and their color depth is 24 bits. The images were taken by a Motic Moticam Pro 252A optical microscope camera with a N800-D motorized auto-focus microscope, and the blood smears were processed with a newly-developed hematology reagent for rapid WBC staining. The overall background of most of the images of Dataset 1 looks yellow.

    Images from Dataset 1.

    Instruction

    The class labels of each image in Dataset 1 is shown in the files Class Labels of Dataset 1.csv . The labels (1- 5) represent neutrophil, lymphocyte, monocyte, eosinophil and basophil, respectively.

    Citation

    Please use the following citation when referencing the dataset:

    @article{Zheng2018,
      title={Fast and Robust Segmentation of White Blood Cell Images by Self-supervised Learning},
      author={Xin Zheng and Yong Wang and Guoyou Wang and Jianguo Liu},
      journal={Micron},
      volume={107},
      pages={55--71},
      year={2018},
      publisher={Elsevier}
      doi={https://doi.org/10.1016/j.micron.2018.01.010},
      url={https://www.sciencedirect.com/science/article/pii/S0968432817303037}
    }


    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:10 去赚积分?
    • 537浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享