公开数据集
数据结构 ? 46.5M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Context
**`Stanford Sentiment Treebank V1.0`**
`Live Demo :` http://nlp.stanford.edu:8080/sentiment/rntnDemo.html
![DEMO](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1746215%2F6d0f345133d3c809bf3c137c1719dbbe%2Fss?generation=1576751860325651&alt=media)
This is the dataset of the paper:
**Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank**
Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher Manning, Andrew Ng and Christopher Potts
Conference on Empirical Methods in Natural Language Processing (EMNLP 2013)
Content
11,855 sentences from movie reviews
Parses generated using Stanford parser
Treebank generated from parses
215,154 unique phrases
Phrases annotated by Mechanical Turk for sentiment
What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.
Acknowledgements
If you use this dataset in your research, please cite the above paper.
> @incollection{SocherEtAl2013:RNTN,
> title = {{Parsing With Compositional Vector Grammars}},
> author = {Richard Socher and Alex Perelygin and Jean Wu and Jason Chuang and Christopher Manning and Andrew Ng and Christopher Potts},
> booktitle = {{EMNLP}},
> year = {2013}
> }
`Additional Source of Dataset`: https://github.com/clairett/pytorch-sentiment-classification/tree/master/data/SST2
Inspiration
Transformers have been a flashy topic in AI world, good enough to bring anyone's attention. People want to explore about these models and may be they end up with some MAGIC better than these models. Keeping this in mind, I have uploaded this dataset here, to ease people understand the data, Read the research paper, included. and; try their own approaches on getting a kick from my starter kernel.
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。