公开数据集
数据结构 ? 4477.46M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
License
These models are all released under the same license as the source code (Apache 2.0).
Context
From the README of the GitHub repository (https://github.com/google-research/bert):
> BERT, or Bidirectional Encoder Representations from Transformers, is a new method of pre-training language representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks.
>Our academic paper which describes BERT in detail and provides full results on a number of tasks can be found here: https://arxiv.org/abs/1810.04805 .
Content
This dataset contains the latest pre-trained models, along with the code from Google Research's BERT GitHub repository, as of the data of last retrieval (as noted in the file descriptions and the last commit date).
>We are releasing the BERT-Base and BERT-Large models from the paper. Uncased means that the text has been lowercased before WordPiece tokenization, e.g., John Smith becomes john smith. The Uncased model also strips out any accent markers. Cased means that the true case and accent markers are preserved. Typically, the Uncased model is better unless you know that case information is important for your task (e.g., Named Entity Recognition or Part-of-Speech tagging).
>
>These models are all released under the same license as the source code (Apache 2.0).
>
>For information about the Multilingual and Chinese model, see the Multilingual README.
>
>When using a cased model, make sure to pass --do_lower=False to the training scripts. (Or pass do_lower_case=False directly to FullTokenizer if you're using your own script.)
Models included in this dataset:
- BERT-Base, Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Large, Uncased: 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Cased: 12-layer, 768-hidden, 12-heads , 110M parameters
- BERT-Large, Cased: 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Multilingual Cased (New, recommended): 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Base, Chinese: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters
**NOT** included:
- BERT-Base, Multilingual Uncased (Orig, not recommended) (Not recommended, use Multilingual Cased instead): 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
Each .zip file contains three items:
- A TensorFlow checkpoint (bert_model.ckpt) containing the pre-trained weights (which is actually 3 files).
- A vocab file (vocab.txt) to map WordPiece to word id.
- A config file (bert_config.json) which specifies the hyperparameters of the model.
Acknowledgements
This is not my work; it is the work of Google Research. Please read their paper and the README in the repository for more information about how BERT works, why it's useful and important, and how to use it.
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。