Select Language

AI社区

公开数据集

贝特

贝特

0.11M
255 浏览
0 喜欢
0 次下载
0 条讨论
Software,NLP,Deep Learning,Neural Networks Classification

数据结构 ? 0.11M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    ## Description This dataset consists of modified versions of the Bert scripts by [Phil Culliton](https://www.kaggle.com/philculliton) to be imported into kernels as a single library instead of adding each module as a separate utility script: 1. [`bert_modeling`](https://www.kaggle.com/philculliton/bert-modeling) 2. [`bert_optimization`](https://www.kaggle.com/philculliton/bert-optimization) 3. [`bert_tokenization`](https://www.kaggle.com/philculliton/bert-tokenization) 4. [`bert_baseline`](https://www.kaggle.com/dimitreoliveira/tf2-0-baseline-w-bert-translated-to-tf2-0)* > For the `baseline` script, I am using a simplified/organized version of the [translated version](https://www.kaggle.com/dimitreoliveira/tf2-0-baseline-w-bert-translated-to-tf2-0) by [dimitreoliveira](https://www.kaggle.com/dimitreoliveira) instead of the [original one](https://www.kaggle.com/philculliton/tf2-0-baseline-w-bert) by the Tensorflow team ## Usage To use in your Kernel: 1. Add this dataset as a new dataset. That adds the three files to your `input` folder under `TF2Bert` subfolder. 2. Import the library modules using the following commands in your script: import os os.chdir("/kaggle/input") from tf2bert import modeling, optimization, tokenization, baseline os.chdir('/kaggle/working`) ## License As described in the files, the code is licensed under the [Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0)
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 255浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享