公开数据集
数据结构 ? 49G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Welcome to YouTube Faces Database, a database of face videos designed for studying the problem of unconstrained face recognition in videos. The data set contains 3,425 videos of 1,595 different people. All the videos were downloaded from YouTube. An average of 2.15 videos are available for each subject. The shortest clip duration is 48 frames, the longest clip is 6,070 frames, and the average length of a video clip is 181.3 frames.
Number of videos per person:
#videos | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
#people | 591 | 471 | 307 | 167 | 51 | 8 |
In designing our video data set and benchmarks we follow the example of the 'Labeled Faces in the Wild' LFW image collection. Specifically, our goal is to produce a large scale collection of videos along with labels indicating the identities of a person appearing in each video. In addition, we publish benchmark tests, intended to measure the performance of video pair-matching techniques on these videos. Finally, we provide descriptor encodings for the faces appearing in these videos, using well established descriptor methods.
Data Collection
Collection setup: We begin by using the 5,749 names of subjects included in the LFW data set to search YouTube for videos of these same individuals. The top six results for each query were downloaded. We minimize the number of duplicate videos by considering two videos' names with edit distance less than 3 to be duplicates. Downloaded videos are then split to frames at 24fps. We detect faces in these videos using the Viola-Jones face detector. Automatic screening was performed to eliminate detections of less than 48 consecutive frames, where detections were considered consecutive if the Euclidean distance between their detected centers was less than 10 pixels. This process ensures that the videos contain stable detections and are long enough to provide useful information for the various recognition algorithms. Finally, the remaining videos were manually verified to ensure that (a) the videos are correctly labeled by subject, (b) are not semi-static, still-image slide-shows, and (c) no identical videos are included in the database.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。