公开数据集
数据结构 ? 0.71M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Problem Description
Given dataset contains data of tweets on various airline’s twitter handles.
It contains a total of 12 columns, out of which one column specifies the sentiment of the tweet. All other columns provide various information related to what was the tweet, where was it posted from, when was it posted, it's retweeted; etc.
My task was to build a machine learning / deep learning model to predict the sentiment of the tweet using all or some of the other given columns
## Data Description
Description of columns of the dataset is given below -
1. tweet_id -- Id of the tweet
2. airline_sentiment -- Sentiment of the tweet (Target variable)
3. airline_sentiment_confidence -- Confidence with which the given sentiment was determined
4. negativereason_confidence -- Confidence with which the negative reason of tweet was predicted
5. name -- Name of the person who tweeted
6. retweet_count -- Number of retweets
7. text -- Text of the tweet whose sentiment has to be predicted
8. tweet_created -- Time at which the tweet was created
9. tweet_location -- Location from where the tweet was posted
10. user_timezone -- Time zone from where the tweet was posted
11. negativereason -- Reason for which user posted a negative tweet
12. airline -- Airline for which the tweet was posted
Inspiration
The data is a nice combination of Numeric and Non-numeric featutres. it can be used for sentiment analysis.
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。