Select Language

AI社区

公开数据集

航空公司人气微博

航空公司人气微博

0.71M
258 浏览
0 喜欢
0 次下载
0 条讨论
Business,Earth and Nature,NLP,Linguistics Classification

数据结构 ? 0.71M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Problem Description Given dataset contains data of tweets on various airline’s twitter handles. It contains a total of 12 columns, out of which one column specifies the sentiment of the tweet. All other columns provide various information related to what was the tweet, where was it posted from, when was it posted, it's retweeted; etc. My task was to build a machine learning / deep learning model to predict the sentiment of the tweet using all or some of the other given columns ## Data Description Description of columns of the dataset is given below - 1. tweet_id -- Id of the tweet 2. airline_sentiment -- Sentiment of the tweet (Target variable) 3. airline_sentiment_confidence -- Confidence with which the given sentiment was determined 4. negativereason_confidence -- Confidence with which the negative reason of tweet was predicted 5. name -- Name of the person who tweeted 6. retweet_count -- Number of retweets 7. text -- Text of the tweet whose sentiment has to be predicted 8. tweet_created -- Time at which the tweet was created 9. tweet_location -- Location from where the tweet was posted 10. user_timezone -- Time zone from where the tweet was posted 11. negativereason -- Reason for which user posted a negative tweet 12. airline -- Airline for which the tweet was posted Inspiration The data is a nice combination of Numeric and Non-numeric featutres. it can be used for sentiment analysis.
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 258浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享