公开数据集
数据结构 ? 72.61M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
This is a repository for an ongoing data collection project for fake news research at ASU. We describe and compare FakeNewsNet with other existing datasets in Fake News Detection on Social Media: A Data Mining Perspective. We also perform a detail analysis of FakeNewsNet dataset, and build a fake news detection model on this dataset in Exploiting Tri-Relationship for Fake News Detection
JSON version of this dataset is available in github here.
The new version of this dataset described in FakeNewNet will be published soon or you can email authors for more info.
News Content
It includes all the fake news articles, with the news content attributes as follows:
source: It indicates the author or publisher of the news article
headline: It refers to the short text that aims to catch the attention of readers and relates well to the major of the news topic.
body_text: It elaborates the details of news story. Usually there is a major claim which shaped the angle of the publisher and is specifically highlighted and elaborated upon.
image_video: It is an important part of body content of news article, which provides visual cues to frame the story.
Social Context
It includes the social engagements of fake news articles from Twitter. We extract profiles, posts and social network information for all relevant users.
user_profile: It includes a set of profile fields that describe the users' basic information
user_content: It collects the users' recent posts on Twitter
user_followers: It includes the follower list of the relevant users
user_followees: It includes list of users that are followed by relevant users
References
If you use this dataset, please cite the following papers:
@article{shu2017fake,
title={Fake News Detection on Social Media: A Data Mining Perspective},
author={Shu, Kai and Sliva, Amy and Wang, Suhang and Tang, Jiliang and Liu, Huan},
journal={ACM SIGKDD Explorations Newsletter},
volume={19},
number={1},
pages={22--36},
year={2017},
publisher={ACM}
}
@article{shu2017exploiting,
title={Exploiting Tri-Relationship for Fake News Detection},
author={Shu, Kai and Wang, Suhang and Liu, Huan},
journal={arXiv preprint arXiv:1712.07709},
year={2017}
}
@article{shu2018fakenewsnet,
title={FakeNewsNet: A Data Repository with News Content, Social
Context and Dynamic Information for Studying Fake News on Social Media},
author={Shu, Kai and Mahudeswaran, Deepak and Wang, Suhang and Lee,
Dongwon and Liu, Huan},
journal={arXiv preprint arXiv:1809.01286},
year={2018}
}
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。