公开数据集
数据结构 ? 133.2M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Task 4的主要任务是简单名词(名词或基本名词短语)之间的语义关系的分类,例如,蜜蜂,显示了产品生产者关系的一个实例。这种分类发生在书面英语文本中的一个句子的语境中。语义关系分类算法可以应用于信息检索、信息提取、文本摘要、问答等方面。对文本蕴涵(Tatu和Moldovan, 2005)的认识是在高端NLP应用中成功使用这种类型的深入分析的一个例子。
文件
大小:小数据集,包含7个关系类型和总共1529个注释示例。
相关论文
1.T. Chklovskiand P. Pantel. 2004. Verbocean: Mining the web for fine-grained semantic verb relations. In Proc.Conf.onEmpiricalMethodsin NaturalLanguageProcessing, EMNLP-04, pages 33–40, Barcelona, Spain. 2.R. Girju, D. Moldovan, M. Tatu, and D. Antohe. 2005. On the semantics of noun compounds. Computer Speech and Language, 19:479–496.
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。