公开数据集
数据结构 ? 1001.5G
README.md
All metadata and features for all tracks are distributed in fma_metadata.zip
(342 MiB).
The below tables can be used with pandas or any other data analysis tool.
See the paper or the usage.ipynb
notebook for a description.
tracks.csv
: per track metadata such as ID, title, artist, genres, tags and play counts, for all 106,574 tracks.genres.csv
: all 163 genres with name and parent (used to infer the genre hierarchy and top-level genres).features.csv
: common features extracted with librosa.echonest.csv
: audio features provided by Echonest (now Spotify) for a subset of 13,129 tracks.
Then, you got various sizes of MP3-encoded audio data:
fma_small.zip
: 8,000 tracks of 30s, 8 balanced genres (GTZAN-like) (7.2 GiB)fma_medium.zip
: 25,000 tracks of 30s, 16 unbalanced genres (22 GiB)fma_large.zip
: 106,574 tracks of 30s, 161 unbalanced genres (93 GiB)fma_full.zip
: 106,574 untrimmed tracks, 161 unbalanced genres (879 GiB)
See the wiki (or #41) for known issues (errata).
Code
The following notebooks, scripts, and modules have been developed for the dataset.
usage.ipynb
: shows how to load the datasets and develop, train, and test your own models with it.analysis.ipynb
: exploration of the metadata, data, and features. Creates the figures used in the paper.baselines.ipynb
: baseline models for genre recognition, both from audio and features.features.py
: features extraction from the audio (used to createfeatures.csv
).webapi.ipynb
: query the web API of the FMA. Can be used to update the dataset.creation.ipynb
: creation of the dataset (used to createtracks.csv
andgenres.csv
).creation.py
: creation of the dataset (long-running data collection and processing).utils.py
: helper functions and classes.
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。