公开数据集
数据结构 ? 4.4G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
The sigsep musdb18 data set consists of a total of 150 full-track songs of different styles and includes both the stereo mixtures and the original sources, divided between a training subset and a test subset.
Its purpose is to serve as a reference database for the design and the evaluation of source separation algorithms. The objective of such signal processing methods is to estimate one or more sources from a set of mixtures, e.g. for karaoke applications. It has been used as the official dataset in the professionally-produced music recordings task for SiSEC 2018, which is the international campaign for the evaluation of source separation algorithms.
musdb18 contains two folders, a folder with a training set: “train”, composed of 100 songs, and a folder with a test set: “test”, composed of 50 songs. Supervised approaches should be trained on the training set and tested on both sets.
All files from the musdb18 dataset are encoded in the Native Instruments stems format (.mp4). It is a multitrack format composed of 5 stereo streams, each one encoded in AAC @256kbps. These signals correspond to:
- 0 - The mixture,
- 1 - The drums,
- 2 - The bass,
- 3 - The rest of the accompaniment,
- 4 - The vocals.
For each file, the mixture correspond to the sum of all the signals. All signals are stereophonic and encoded at 44.1kHz.
As the MUSDB18 is encoded as STEMS, it relies on ffmpeg to read the multi-stream files. We provide a python wrapper called stempeg that allows to easily parse the dataset and decode the stem tracks on-the-fly.
If you use the MUSDB dataset for your research - Cite the MUSDB18 Dataset
@misc{MUSDB18,
author = {Rafii, Zafar and
Liutkus, Antoine and
Fabian-Robert St{"o}ter and
Mimilakis, Stylianos Ioannis and
Bittner, Rachel},
title = {The {MUSDB18} corpus for music separation},
month = dec,
year = 2017,
doi = {10.5281/zenodo.1117372},
url = {https://doi.org/10.5281/zenodo.1117372}
}
If compare your results with SiSEC 2018 Participants - Cite the SiSEC 2018 LVA/ICA Paper
@inproceedings{SiSEC18,
author="St{"o}ter, Fabian-Robert and Liutkus, Antoine and Ito, Nobutaka",
title="The 2018 Signal Separation Evaluation Campaign",
booktitle="Latent Variable Analysis and Signal Separation:
14th International Conference, LVA/ICA 2018, Surrey, UK",
year="2018",
pages="293--305"
}
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。