公开数据集
数据结构 ? 220G
README.md
There are 1.8 million train images from 365 scene categories in the Places365-Standard, which are used to train the Places365 CNNs. There are 50 images per category in the validation set and 900 images per category in the testing set.
- Places365 Development kit
Overview and statistics of the data.
meta data for the scene categories.
Matlab routines for evaluation.
Image list of train and val for Places365-Standard and Places365-Challenge
Please be sure to read the included README file for details. The development kit includes
High-resolution images
Train images. 105GB. MD5: 67e186b496a84c929568076ed01a8aa1
Validation images. 2.1GB. MD5: 9b71c4993ad89d2d8bcbdc4aef38042f
Test images. 19GB. MD5: 41a4b6b724b1d2cd862fb3871ed59913
The images in the above archives have been resized to have a minimum dimension of 512 while preserving the aspect ratio of the image. Original images that had a dimension smaller than 512 have been left unchanged.
Small images (256 * 256)
Train images. 24GB. MD5: 53ca1c756c3d1e7809517cc47c5561c5
Validation images. 501M. MD5: e27b17d8d44f4af9a78502beb927f808
Test images. 4.4G. MD5: f532f6ad7b582262a2ec8009075e186b
The images in the above archives have been resized to 256 * 256 regardless of the original aspect ratio.
Small images (256 * 256) with easy directory structure
Train and val images. 21G.
These images are 256x256 images, in a more friendly directory structure that in train and val split the images are organized such as train/reception/00003724.jpg and val/raft/000050000.jpg. So you could use pyTorch example script to train network directly as: python main.py -a resnet18 places365_standard.
LMDB data for the 256 * 256 images
LMDB files.
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。