公开数据集
数据结构 ? 38.18G
README.md
Abstract
Scene categorization is a fundamental problem in computer vision. However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories. Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available dataset of scene categories contains only 15 classes. In this paper we propose the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images. We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance. We measure human scene classification performance on the SUN database and compare this with computational methods.
Paper
J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba.
SUN Database: Large-scale Scene Recognition from Abbey to Zoo.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva.
SUN Database: Exploring a Large Collection of Scene Categories
International Journal of Computer Vision (IJCV)
Benchmark evaluation
We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance. The results are shown in the figure on the right.
Results Visualization
We visualize the results using the combined kernel from all features for the first training and testing partition in the following webpage. For each of the 397 categories, we show the class name, the ROC curve, 5 sample traning images, 5 sample correct predictions, 5 most confident false positives (with true label), and 5 least confident false negatives (with wrong predicted label).
Image Database
The database contains 397 categories SUN dataset used in the benchmark of the paper. The number of images varies across categories, but there are at least 100 images per category, and 108,754 images in total. Images are in jpg, png, or gif format. The images provided here are for research purposes only.
SUN397.tar.gz (tar.gz file, 39GB, md5sum=8ca2778205c41d23104230ba66911c7a).
Training and Testing Partition
For the results in the paper we use a subset of the dataset that has 50 training images and 50 testing images per class, averaging over the 10 partitions in the following. To plot the curve in Figure 4(b) of the paper, we use the first n=(1, 5, 10, 20) images outof the 50 training images per class for training, and use all the same 50 testing images for testing no matter what size the training set is. (If you are using Microsoft Windows, you may need to replace / by \ in the following files.)
Download All Partitions (zip file).
Soucre Code for Benchmark evaluation
Scene Hierarchy
We have manually built an overcomplete three-level hierarchy for all 908 scene categories. The scene categories are arranged in a 3-level tree: with 908 leaf nodes (SUN categories) connected to 15 parent nodes at the second level (basic-level categories) that are in turn connected to 3 nodes at the first level (superordinate categories) with the root node at the top. The hierarchy is not a tree, but a Directed Acyclic Graph. Many categories such as "hayfield" are duplicated in the hierarchy because there might be confusion over whether such a category belongs in the natural or man-made sub-hierarchies.
Explore SUN Database
Kernel Matrices for SVM
Other kernel matrices are available at THIS link.
Feature Matrices
The feature matrices are avialble at THIS link.
Human Classification Experiments
Human Confusion Matrix (Of the 13 good workers): good_workers_confusion.mat.
Overall confusion matrix and code for analysis:human_release.zip.
Mturk template for the experiment: template
DrawMe: A light-weight Javascript library for line drawing on a picture
DrawMe is a light-weight Javascript library to enable client-end line drawing on a picture in a web browser. It is targeted to provide a basis for self-define labeling tasks for computer vision researchers. It is different from LabelMe, which provides full support but fixed labeling interface. DrawMe is a Javascript library only and the users are required to write their own code to make use of this library for their specific need of labeling. DrawMe does not provide any server or server-end code for labeling, but gives the user greater flexibility for their specific need. It also comes with a simple example with Amazon Mechanical Turk interface that serializes Javascript DOM object into text for HTML form submission. The user can easily build their own labeling interface based on this MTurk example to make use for the Amazon Mechanical Turk for labeling, either using paid workers or the researchers themselves with MTurk sandbox.
Acknowledgments
This work is funded by NSF CAREER Awards 0546262 to A.O, 0747120 to A.T. and partly funded by BAE Systems under Subcontract No. 073692 (Prime Contract No. HR0011-08-C-0134 issued by DARPA), Foxconn and gifts from Google and Microsoft. K.A.E is funded by a NSF Graduate Research fellowship.
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。