公开数据集
数据结构 ? 32.2G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
计算机视觉的核心目标是赋予算法智能描述图像的能力;目标检测是规范的图像描述任务,这在应用程序中实用性很强,并且可以直接在现有设置中进行基准测试。而物体检测器的精确度已经得到了显著提高,并且已经开发出新功能,例如:图像分割和 3D 表示。
从少数例子中有效地学习是机器学习和计算机视觉中一个重要的开放性问题,从科学和实践的角度来看,这个机会是非常令人振奋的。但要开放这个领域进行实证研究,需要一个合适的、高质量的数据集和基准。我们的目标就是通过设计和收集 LVIS,一个用于大规模词汇量对实例分割研究基准数据集来实现这一新的研究方向,并在最终完成 164k 大小的包含 1000 类物体的约 200 万个高质量的实力分割标注图像数据集。
Introducing LVIS
1200+ CategoriesFound by data-driven object discovery in 164k images.
Long Tail
Category discovery naturally reveals a large number of rare categories.
Masks
More than 2 million high quality instance segmentation masks.
LVIS Dataset
v1.0
Training set
1,270,141 instances (1 GB)
100,170 images (18 GB)
Validation set
244,707 instances (192 MB)
19,809 images (1 GB)
Test Dev
info (4 MB)
19,822 images (6 GB)
Test Challenge
info (4 MB)
19,822 images (6 GB)
Please see our recommended best practices for using this data.
Note: LVIS uses the COCO 2017 train, validation, and test image sets. If you have already downloaded the COCO images, you only need to download the LVIS annotations. LVIS val set contains images from COCO 2017 train in addition to the COCO 2017 val split.
Data Format
LVIS has annotations for instance segmentations in a format similar to COCO. The annotations are stored using JSON. The LVIS API can be used to access and manipulate annotations. The JSON file has the following format:
{
info : info
images : [images],
annotations: [annotations],
licenses : [licenses],
}
info{
year : int
version : str,
description : str,
contributor : str,
url : str,
date_created : datetime,
}
license{
id : int
name : str,
url : str,
}
We describe the data structures a bit more in detail below.
Images
Each image now comes with two additional fields. not_exhaustive_category_ids
: List of category ids which don't have all of their instances marked exhaustively.
neg_category_ids
: List of category ids which were verified as not present in the image.
coco_url
:
Image URL. The last two path elements identify the split in the COCO
dataset and the file name (e.g.,
http://images.cocodataset.org/train2017/000000391895.jpg). This
information can be used to load the correct image from your downloaded
copy of the COCO dataset.
not_exhaustive_category_ids
: List of category ids which don't have all of their instances marked exhaustively.
neg_category_ids
: List of category ids which were verified as not present in the image.
coco_url
:
Image URL. The last two path elements identify the split in the COCO
dataset and the file name (e.g.,
http://images.cocodataset.org/train2017/000000391895.jpg). This
information can be used to load the correct image from your downloaded
copy of the COCO dataset.
image{
id : int
width : int,
height : int,
license : int,
flickr_url : str,
coco_url : str,
date_captured : datetime,
not_exhaustive_category_ids : [int],
neg_category_ids : [int],
}
Categories
LVIS categories are loosely based on WordNet synsets. synset
: Provides a unique string identifier for each category. Loosely based on WordNet synets.
synonyms
: List of object names that belong to the same synset.
def
: The meaning of the synset. Most of the meanings are derived from WordNet.
image_count
: Number of images in which the category is annotated.
instance_count
: Number of annotated instances of the category.
frequency
: We divide the categories into three buckets based on image_count
in the train set.
synset
: Provides a unique string identifier for each category. Loosely based on WordNet synets.
synonyms
: List of object names that belong to the same synset.
def
: The meaning of the synset. Most of the meanings are derived from WordNet.
image_count
: Number of images in which the category is annotated.
instance_count
: Number of annotated instances of the category.
frequency
: We divide the categories into three buckets based on image_count
in the train set.
categories{
id : int
synset : str,
synonyms : [str],
def : str,
instance_count : int,
image_count : int,
frequency : str,
}
Annotations
The segmentation format in LVIS is always a list of polygons.
id : int image_id : int, category_id : int, segmentation : [polygon], area : float, bbox : [x,y,w,h], annotation{
}
License
The LVIS annotations along with this website are licensed under a Creative Commons Attribution 4.0 License. All LVIS dataset images come from the COCO dataset; please see link for their terms of use.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。