公开数据集
数据结构 ? 2.4G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Indoor scene recognition is a challenging open problem in high level vision. Most scene recognition models that work well for outdoor scenes perform poorly in the indoor domain. The main difficulty is that while some indoor scenes (e.g. corridors) can be well characterized by global spatial properties, others (e.g., bookstores) are better characterized by the objects they contain. More generally, to address the indoor scenes recognition problem we need a model that can exploit local and global discriminative information.
Database
The database contains 67 Indoor categories, and a total of 15620 images. The number of images varies across categories, but there are at least 100 images per category. All images are in jpg format. The images provided here are for research purposes only.
evaluation
For the results in the paper we use a subset of the dataset that has the same number of training and testing samples per class. The partition that we use is:
1、TrainImages.txt: contains the file names of each training image. Total 67*80 images
2、TestImages.txt: contains the file names of each test image. Total 67*20 images
Annotations
A subset of the images are segmented and annotated with the objects that they contain. The annotations are in LabelMe format:.
Paper
A. Quattoni, and A.Torralba. Recognizing Indoor Scenes. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
Acknowledgments
Thanks to Aude Oliva for helping to create the database of indoor scenes.
Funding for this research was provided by NSF Career award (IIS 0747120)
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。