公开数据集
数据结构 ? 63.11M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
目前基于GAN的艺术生成方法由于对条件输入的依赖而产生非原创的艺术作品。在这里,我们提出了Sketch-And-Paint GAN(SAPGAN),这是第一个从头到尾生成中国山水画的模型,没有条件性输入。SAPGAN由两个GAN组成。SketchGAN用于生成边缘图,PaintGAN用于后续的边缘到绘画的转换。我们的模型是在一个新的中国传统山水画的数据集上训练的,以前从未用于生成性研究。一项242人的视觉图灵测试研究显示,SAPGAN绘画被误认为是人类艺术品的频率为55%,大大超过了基线GAN的绘画。我们的工作为真正的机器原创艺术生成奠定了基础。
Please cite the paper if you choose to use this dataset for your research.
@misc{xue2020endtoend, title={End-to-End Chinese Landscape Painting Creation Using Generative Adversarial Networks}, author={Alice Xue}, year={2020}, eprint={2011.05552}, archivePrefix={arXiv}, primaryClass={cs.CV} }
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。