公开数据集
数据结构 ? 1.19M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
作物品种识别是农业研究、产业和政策的基础。该数据调查了使用小型近红外光谱仪收集的可见光/近红外高光谱数据在埃塞俄比亚识别大麦、鹰嘴豆和高粱品种的可行性。与传统的基于实验室的光谱仪相比,小型NIR光谱仪只需要最少的设备和用户参与。为了本研究的目的,购买了消费者物理SCIO,在撰写本文时它作为一个1000美元的开发工具包提供。该设备使用智能手机应用程序操作,需要互联网连接,光谱数据远程存储。该设备的全波长覆盖范围为740–1070 nm(331个变量)。在相似的位置仔细扫描所有谷物样品。使用最近发布的小型近红外光谱仪SCIO,对2650粒大麦、鹰嘴豆和高粱品种进行了扫描。每个品种随机选择50粒进行扫描。列预测器表示品种名称列740至1070对应于以纳米为单位测量的SCIO波长。该数据集是作为以下研究的一部分创建的:“[用于品种识别的微型NIR光谱仪的评估:埃塞俄比亚大麦、鹰嘴豆和高粱的案例][2]”。灵感我们能用微型光谱仪的光谱数据识别作物品种吗?[1]: https://www.consumerphysics.com/business/technology/ [2]: http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0193620&type=printable
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。