公开数据集
数据结构 ? 10.85G
README.md
Context
http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5
Retinal optical coherence tomography (OCT) is an imaging technique used to capture high-resolution cross sections of the retinas of living patients. Approximately 30 million OCT scans are performed each year, and the analysis and interpretation of these images takes up a significant amount of time (Swanson and Fujimoto, 2017).
Figure 2. Representative Optical Coherence Tomography Images and the Workflow Diagram [Kermany et. al. 2018] http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5
(A) (Far left) choroidal neovascularization (CNV) with neovascular membrane (white arrowheads) and associated subretinal fluid (arrows). (Middle left) Diabetic macular edema (DME) with retinal-thickening-associated intraretinal fluid (arrows). (Middle right) Multiple drusen (arrowheads) present in early AMD. (Far right) Normal retina with preserved foveal contour and absence of any retinal fluid/edema.
Content
The dataset is organized into 3 folders (train, test, val) and contains subfolders for each image category (NORMAL,CNV,DME,DRUSEN). There are 84,495 X-Ray images (JPEG) and 4 categories (NORMAL,CNV,DME,DRUSEN).
Images are labeled as (disease)-(randomized patient ID)-(image number by this patient) and split into 4 directories: CNV, DME, DRUSEN, and NORMAL.
Optical coherence tomography (OCT) images (Spectralis OCT, Heidelberg Engineering, Germany) were selected from retrospective cohorts of adult patients from the Shiley Eye Institute of the University of California San Diego, the California Retinal Research Foundation, Medical Center Ophthalmology Associates, the Shanghai First People’s Hospital, and Beijing Tongren Eye Center between July 1, 2013 and March 1, 2017.
Before training, each image went through a tiered grading system consisting of multiple layers of trained graders of increasing exper- tise for verification and correction of image labels. Each image imported into the database started with a label matching the most recent diagnosis of the patient. The first tier of graders consisted of undergraduate and medical students who had taken and passed an OCT interpretation course review. This first tier of graders conducted initial quality control and excluded OCT images containing severe artifacts or significant image resolution reductions. The second tier of graders consisted of four ophthalmologists who independently graded each image that had passed the first tier. The presence or absence of choroidal neovascularization (active or in the form of subretinal fibrosis), macular edema, drusen, and other pathologies visible on the OCT scan were recorded. Finally, a third tier of two senior independent retinal specialists, each with over 20 years of clinical retina experience, verified the true labels for each image. The dataset selection and stratification process is displayed in a CONSORT-style diagram in Figure 2B. To account for human error in grading, a validation subset of 993 scans was graded separately by two ophthalmologist graders, with disagreement in clinical labels arbitrated by a senior retinal specialist.
For additional information: see http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5
Acknowledgements
data: https://data.mendeley.com/datasets/rscbjbr9sj/2
Citation: http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。